PRELIMINARY HYDROLOGY STUDY

FOR

Moreno Valley Commercial Center

NWC Alessandro Blvd & Lasselle St., Moreno Valley, CA 92553 PEN21-0273 (LST21-0081 & LWQ21-0062)

Prepared By: PLUMP ENGINEERING, INC.

914 E. Katella Avenue Anaheim, CA 92805 (714)385-1835 <u>troy@peica.com</u>

This Drainage Report was prepared under my supervision:

2h

By: _____ Troy Tryfonopoulos Date: 3/29/2022

PEI Job No. 2001078

TABLE OF CONTENTS

	Page No.
TABLE OF CONTENTS	1
INTRODUCTION	2
VICINITY MAP	3
HYDROLOGY ANALYSIS	4
CONCLUSION	7

ATTACHMENTS

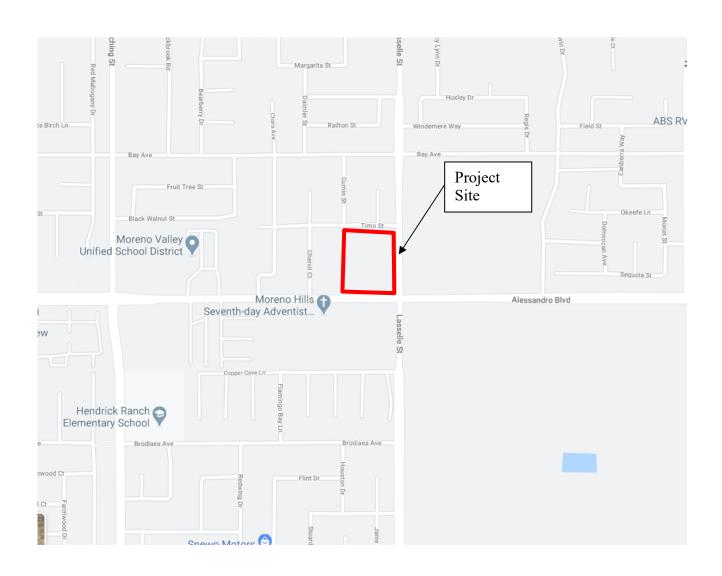
ATTACHMENT 1 – Flow and Volume Calculation (2-year, 10-year, 100-year)

ATTACHMENT 2 – Hydrology Exhibits

- Existing Condition

- Proposed Condition

ATTACHMENT 3 – Infiltration Trench Calculations


INTRODUCTION

The site is located at the northwest corner of Alessandro Blvd. and Lasselle St. in the City of Moreno Valley, California 92553. The site is bounded to the west by developed residential lots, to the north by Timo Street, to the east by Lasselle Street, and to the south by Alessandro Boulevard. The general location of the site is shown on the Site Vicinity Map included on page 3 this report. The subject site property size is approximately $7.97\pm$ acres with disturbed area of $7.97\pm$ acres, presently vacant and undeveloped with good ground cover. Ground cover consists of sparse amounts of native grass and weed growth located throughout the entire site. Overall site topography slopes downward to the southwest corner of the property at a gradient of approximately less than 2.15 percent. There was estimated to be ± 13.5 feet of elevation differential across the overall subject site.

The site also includes off-site street improvements for this project. The site will be designed to also detain the off-site street improvement portions of this project. The off-site improvements are roughly 2.27 acres and consist of near 100% impervious improvements. A BMP Easement will be provided to the city (see Post-Development Hydrology Map) for offsite infiltration trenches.

The preliminary site plan for the proposed development indicates that the site will be developed for commercial use. The site will be developed with two (2) offices (9,900 SF), two (2) retail buildings (3,200 SF), one (1) bank (3,775 SF), two (2) restaurant buildings with drive-thru (6,640 SF), one (1) restaurant with patio (1,595.50 SF) and one (1) gas station with canopy, express car wash, and store (14,915 SF). The site plan indicates that the proposed buildings will generally be surrounded by asphalt concrete pavement with some areas of concrete flatwork. Several landscape planters are proposed to be located around the perimeter of the property and within the parking lot areas of the site.

Stormwater runoff from the site drains to the west along Alessandro Boulevard. The stormwater runoff is collected by a catch basin located 1,800 ft west of the property near the intersection of Alessandro Boulevard and Kitching Street. Stormwater collected by the public storm drain system is discharged to Canyon Lake.

SITE VICINITY MAP

HYDROLOGY ANALYSIS

Hydrologic calculations were performed in accordance with Riverside County Hydrology Manual (April 1978) guidelines. The Hydrology Manual was used to determine the existing and proposed peak flows for the, 2-year, 10-year and 100-year storms as well as the runoff volumes generated for , 2-year, 10-year and 100-year storm events. Figures and Tables below are referenced to that Manual. The previous pre-development use is vacant undeveloped land with pervious cover.

Tributary Area	DA-1	DA-2	DA-3	DA-4	Totals
Acreage, acres; Pre (Post)	- (3.12)	- (1.34)	- (1.54)	- (1.97)	7.97 (7.97)
Time of Concentration, Tc; Pre (Post)	- (8.5)	- (6.5)	- (8.0)	- (8.0)	32 6.5
2 year Pre- Develop. Runoff; Q₂ (cfs)	-	-	-	-	2.46
2 year Post- Develop. Runoff; Q ₂ (cfs)	2.88	1.24	1.42	1.82	4.11
10 year Pre- Develop. Runoff; Q ₁₀ (cfs)	-	-	-	-	3.91
10 year Post- Develop. Runoff; Q ₁₀ (cfs)	4.75	2.04	2.34	3.00	6.79
100 year Pre-Develop. Runoff; Q ₁₀₀ (cfs)	-	-	-	-	9.75
100 year Post-Develop. Runoff; Q ₁₀₀ (cfs)	7.86	3.38	3.88	4.96	20.07

ON-SITE PEAK RUNOFF FLOWS

Table 1: Rational Method Peak Flow

ON-SITE RUNOFF VOLUMES

Table 2: Estimated Storm Runoff Volumes

Tributary Area	DA-1	DA-2	DA-3	DA-4	Totals
Acreage (Pre Development) Acres Acreage (Post Development) Acres	- (3.12)	- (1.34)	- (1.54)	- (1.97)	7.97 (7.97)
24-hr. Precipitation Depth(inches) P ₂₄ (2 yr)	1.96	1.96	1.96	1.96	-
24-hr. Precipitation Depth(inches) P ₂₄ (10 yr)	3.10	3.10	3.10	3.10	-

Hydrology Study Moreno Valley Commercial Center NWC Alessandro Blvd. & Lasselle St. Moreno Valley, CA 92553

24-hr. Precipitation Depth(inches) P ₂₄ (100 yr)	4.83	4.83	4.83	4.83	-
CN (AMC II) Pre Development			74		
CN (AMC II) Post Development			90		
CN (AMC I) Pre Development			55		
CN (AMC I) Post Development			81		
CN (AMC III) Pre Development			88		
CN (AMC III) Post Development			96		
2 year Pre-Develop. Volume V ₂ (Ac-ft)	-	-	-	-	0.008
2 year Post-Develop. Volume V ₂ (Ac-ft)	0.151	0.065	0.074	0.095	0.385
10 year Pre-Develop. Volume V10 (Ac-ft)	-	-	-	-	1.267
10 year Post-Develop. Volume V ₁₀ (Ac-ft)	0.690	0.296	0.340	0.435	1.760
100 year Pre-Develop. Volume V ₁₀₀ (Ac-ft)	-	-	-	-	2.331
100 year Post-Develop. Volume V100 (Ac-ft)	1.13	0.487	0.560	0.716	2.898

OFF-SITE RUNOFF VOLUMES

Table 3: Estimated Storm Runoff Volumes

Tributary Area	DA-A	DA-B	-	-	Totals
Acreage (Pre Development) Acres Acreage (Post Development) Acres	0.40 (0.40)	1.87 (1.87)	-	-	2.27 (2.27)
24-hr. Precipitation Depth(inches) P ₂₄ (2 yr)	1.96	1.96	-	-	-
24-hr. Precipitation Depth(inches) P ₂₄ (10 yr)	3.10	3.10	-	-	-
24-hr. Precipitation Depth(inches) P ₂₄ (100 yr)	4.83	4.83	-	-	-
CN (AMC II) Pre Development			74		
CN (AMC II) Post Development			90		
CN (AMC I) Pre Development			55		
CN (AMC I) Post Development			81		
CN (AMC III) Pre Development			88		
CN (AMC III) Post Development			96		
2 year Pre-Develop. Volume V ₂ (Ac-ft)	0.000	0.002	-	-	0.002
2 year Post-Develop. Volume V ₂ (Ac-ft)	0.019	0.090	-	-	0.110
10 year Pre-Develop. Volume V ₁₀ (Ac-ft)	0.060	0.300	-	-	0.361
10 year Post-Develop. Volume V ₁₀ (Ac-ft)		0.413	-	-	0.501
100 year Pre-Develop. Volume V ₁₀₀ (Ac-ft)	0.120	0.550	-	-	0.664
100 year Post-Develop. Volume V ₁₀₀ (Ac-ft)	0.150	0.680	-	-	0.825

RUNOFF SUMMARY, ONSITE AND OFFSITE								
Storm Event	Storm Vpre Vpost (ac-ft)		Change in Volume (ac-ft)	Change in Volume (cf)				
2-yr	0.010	0.495	0.485	21127				
10-yr	1.628	2.261	0.633	27573				
100-yr	2.994	3.723	0.729	31816				

CONCLUSION

The existing peak runoff flow from the project area was calculated to be 3.91 cfs, and 9.75 cfs for the 10-year and 100-year storms, respectively. The proposed peak runoff flow from the project area after improvements was calculated to be 6.79 cfs, and 20.07 cfs for the 10-year and 100-year storms, respectively. Therefore, peak runoff increased after development and the proposed outlet retention will protect downstream storm drains and account for increased runoff. Refer to attachment 2 for the pre-development and post-development exhibits.

The existing runoff volumes from the project area was calculated to be 0.010 Ac-ft, 1.628 Ac-ft, and 2.994 Ac-ft. for the 2-year, 10-year, and 100-year storms, respectively. The proposed runoff volume based on the project improvements was calculated to be 0.495 Ac-ft, 2.261 Ac-ft, and 3.723 Ac-ft for the 2-year, 10-year, and 100-year storms, respectively. Post-development condition has a greater runoff volume than the pre-development condition, with the difference between pre and post development volume being 0.485 Ac-ft, 0.633 Ac-ft, and 0.729 Ac-ft for the 2-year, 10-year, and 100-year storms, respectively. Pre-development 100-year volumes for offsite are found to be 0.120 Ac-ft for the northerly end of the site (DA-A) and 0.550 Ac-ft for the southerly end of the site (DA-B). Post-development 100-year volumes for offsite are found to be 0.150 Ac-ft for the northerly end of the site (DA-A) and 0.680 Ac-ft for the southerly end of the site (DA-B). Please for refer to Table 3. Post development condition for the 100-year storm event is 19.5% higher than the pre-development combined is 31,816 cf.

The change in the pre and post development volume is addressed by providing infiltration trenches for each DMA area with a total capacity of 34,093 cf onsite. The infiltration trenches are designed with connection pipes in case any of the trenches overflow. The northerly infiltration trenches are connected together and will overflow to an on-site storm drain with an outlet to the offsite curb and gutter. The curb and gutter then conveys the runoff to a downstream catch basin.

Similarly, the overflow of the southerly infiltration trenches will be distributed to each other via connecting pipes. In the event the 100-year design storm volume is exceeded, the overflow will drain to a catch basin on the southwesterly side of the property. Refer to Attachment 1 for offsite and onsite 100-year design storm volumes, as well as, the post-development hydrology exhibit (Attachment 2) for the provided capacity of each infiltration trench. Refer to Attachment 3 for the infiltration volume calculations as well. The provided capacity of the infiltration trenches exceeds the change in the pre and post development volume. Therefore, there are no hydraulic conditions of concern (HCOC's) that exist for this project. The proposed infiltration trenches are designed per the Riverside County BMP Handbook.

Attachment 1 Flow and Volume Calculation (2-year,10-year,100-year)

ONSITE PEAK Runoff Flow Calculations

Q = CIA

Where :

- Q = runoff in cubic feet per second (cfs) from a given area.
- C= Coefficient of Runoff
- I = the time-averaged rainfall intensity per NOAA (inches/hour) corresponding to the TC
- A = Drainage area (acres)

Return Frequency = 2 years	5
----------------------------	---

PRE-DEVELOPMENT									
Drainage Area	A (acres)	Soils Group	Coefficient C	TC (min)	I _{TC-2YR} (In/hr)	Q (cfs)			
TOTAL	7.97	С	0.455	32	0.678	2.46			

TOTAL 2.46

Return Frequency = 2 years

POST-DEVELOPMENT									
Drainage	Α	Soils	Coefficient	TC	I _{TC-2YR}	Q			
Area	(acres)	Group	С	(min)	(In/hr)	(cfs)			
1	3.12	С	0.870	8.5	1.06	2.88			
2	1.34	С	0.870	6.5	1.06	1.24			
3	1.54	С	0.870	8.0	1.06	1.42			
4	1.97	С	0.870	8.0	1.06	1.82			

TOTAL 4.11

Return Frequency = 10 years

PRE-DEVELOPMENT									
Drainage	Α	Soils	Coefficient	TC	I _{TC-10YR}	Q			
Area	(acres)	Group	С	(min)	(In/hr)	(cfs)			
TOTAL	7.97	С	0.535	32	0.916	3.91			
					TOTAL	3.91			

Return F	requency =	10 years								
POST-DEVELOPMENT										
Drainage	Α	Soils	Coefficient	TC	I _{TC-10YR}	Q				
Area	(acres)	Group	С	(min)	(In/hr)	(cfs)				
1	3.12	С	0.880	8.5	1.73	4.75				
2	1.34	С	0.880	6.5	1.73	2.04				
3	1.54	С	0.880	8.0	1.73	2.34				
4	1.97	С	0.880	8.0	1.73	3.00				
					TOTAL	6.79				

Return Frequency = 100 years								
PRE-DEVELOPMENT								
Drainage	Α	Soils	Coefficient	TC	I _{TC-100YR}	Q		
Area	(acres)	Group	С	(min)	(In/hr)	(cfs)		
TOTAL	7.97	С	0.665	32	1.84	9.75		
					TOTAL	9.75		

Return Frequency = 100 years

POST-DEV	ELOPMEN ⁻	Г				
Drainage	Α	Soils	Coefficient	тс	I _{TC-100YR}	Q
Area	(acres)	Group	С	(min)	(In/hr)	(cfs)
1	3.12	С	0.890	8.5	2.83	7.86
2	1.34	С	0.890	6.5	2.83	3.38
3	1.54	С	0.890	8.0	2.83	3.88
4	1.97	С	0.890	8.0	2.83	4.96
					TOTAL	20.07

ONSITE Runoff Volume Calculations

 $\begin{array}{l} \textbf{V=} \underbrace{\textbf{Y^*A^*P_{24}}}_{\textbf{12}} \\ \textbf{Where:} \\ \textbf{V=} Volume in acre-ft. \\ \textbf{Y=} 24-hour storm runnoff yield factor for subarea A \\ &= \underbrace{(P_{24} - l_a)^2}_{(P_{24} - l_a + S)P_{24}} \\ \textbf{P}_{24} = 24-hour storm rainfall from NOAA Precipitation Frequency Server (in.) \\ \textbf{l}_a = initial abstraction \\ &= 0.2S \\ \textbf{S=} \underbrace{1000}_{-10} -10 \end{array}$

A= Drainage area in acres

Return Frequency = 2 Years, 24 hour

	PRE-DEVELOPMENT									
Drainage	Α	Soils	CN	CN	S	l _a	P ₂₄	Y	V	
Area	(acres)	Group	AMC II	AMC I					(Ac-ft)	
TOTAL	7.97	С	74	55	8.18	1.64	1.96	0.01	0.008	
								TOTAL	0.008	

Return Frequency = 2 Years, 24 hour

	POST-DEVELOPMENT										
Drainage	Α	Soils	CN	CN	S	l _a	P ₂₄	Y	V		
Area	(Acres)	Group	AMC II	AMC I					(Ac-ft)		
1	3.12	С	90	81	2.35	0.47	1.96	0.30	0.151		
2	1.34	С	90	81	2.35	0.47	1.96	0.30	0.065		
3	1.54	С	90	81	2.35	0.47	1.96	0.30	0.074		
4	1.97	С	90	81	2.35	0.47	1.96	0.30	0.095		
								TOTAL	0.005		

TOTAL 0.385

Return Frequency = **10 Years, 24 hour**

	PRE-DEVELOPMENT									
Drainage	Α	Soils	CN	CN	S	l _a	P ₂₄	Y	V	
Area	(acres)	Group	AMC II	AMC III					(Ac-ft)	
TOTAL	7.97	С	74	88	1.36	0.27	3.1	0.62	1.27	
	TOTAL 1.267									

Return Frequency = 10 Years, 24 hour

	POST-DEVELOPMENT										
Drainage	Α	Soils	CN	CN	S	l _a	P ₂₄	Y	V		
Area	(acres)	Group	AMC II	AMC III					(Ac-ft)		
1	3.12	С	90	96	0.42	0.08	3.1	0.86	0.69		
2	1.34	С	90	96	0.42	0.08	3.1	0.86	0.296		
3	1.54	С	90	96	0.42	0.08	3.1	0.86	0.340		
4	1.97	С	90	96	0.42	0.08	3.1	0.86	0.435		
								TOTAL	1.760		

J:\Empire Design Group\C.2001078 - Moreno Valley Commercial Center\Reports\Hydrology\Hydrology Calculations - Moreno Valley - MASTER SHEET

Return Frequency = 100 Years, 24 hour

	PRE-DEVELOPMENT										
Drainage	Α	Soils	CN	CN	S	l _a	P ₂₄	Y	v		
Area	(acres)	Group	AMC II	AMC III					(Ac-ft)		
1	7.97	С	74	88	1.36	0.27	4.83	0.73	2.330		
								TOTAL	2.330		

Return Frequency = 100 Years, 24 hour

	POST-DEVELOPMENT											
Drainage	Α	Soils	CN	CN	S	l _a	P ₂₄	Y	v			
Area	(acres)	Group	AMC II	AMC III					(Ac-ft)			
1	3.12	С	90	96	0.42	0.08	4.83	0.90	1.135			
2	1.34	С	90	96	0.42	0.08	4.83	0.90	0.487			
3	1.54	С	90	96	0.42	0.08	4.83	0.90	0.560			
4	1.97	С	90	96	0.42	0.08	4.83	0.90	0.716			
									2.898			

OFFSITE Runoff Volume Calculations

$$V = \frac{Y^*A^*P_{24}}{12}$$
Where :

$$V = Volume \text{ in acre-ft.}$$

$$Y = 24 \text{-hour storm runnoff yield factor for subarea A}$$

$$= \frac{(P_{24} - I_a)^2}{(P_{24} - I_a + S)P_{24}}$$

$$P_{24} = 24 \text{-hour storm rainfall from NOAA Precipitation Frequency Server (in.)}$$

$$I_a = \text{ initial abstraction}$$

$$= 0.2S$$

$$S = \underline{1000} - 10$$

CN

A= Drainage area in acres

Return Frequency = 2 Years, 24 hour

	PRE-DEVELOPMENT										
Drainage	Α	Soils	CN	CN	S	l _a	P ₂₄	Y	V		
Area	(acres)	Group	AMC II	AMC I					(Ac-ft)		
А	0.40	С	74	55	8.18	1.64	1.96	0.01	0.000		
В	1.87	С	74	55	8.18	1.64	1.96	0.01	0.002		
								TOTAL	0.002		

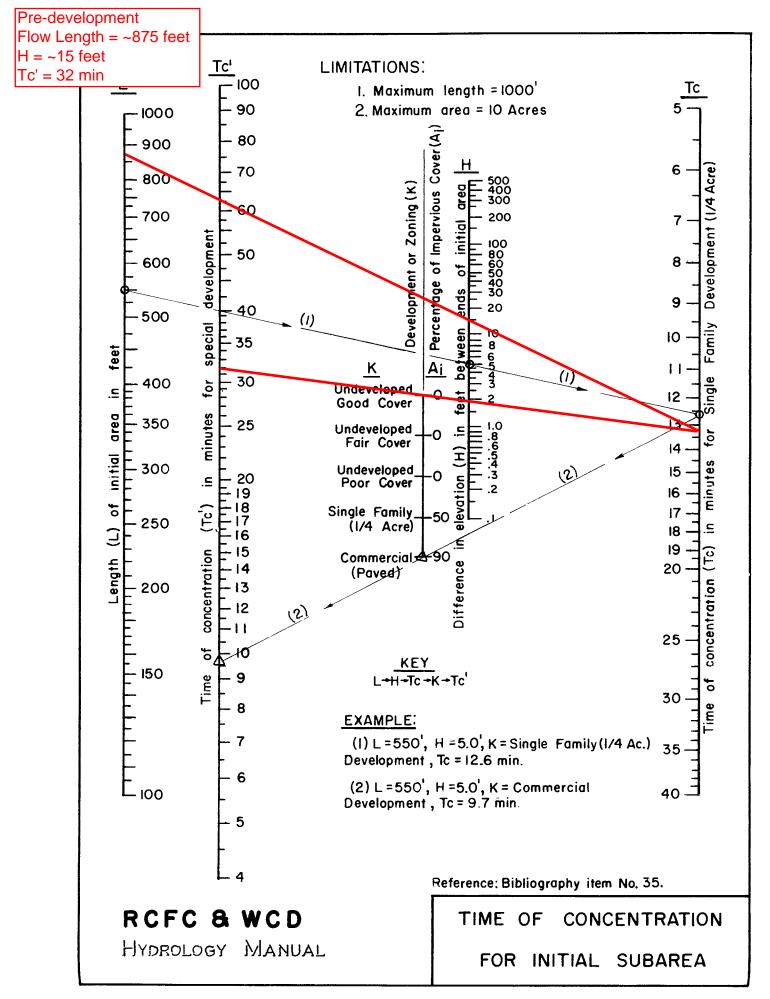
Return Frequency =	2 Years, 24 hour
--------------------	------------------

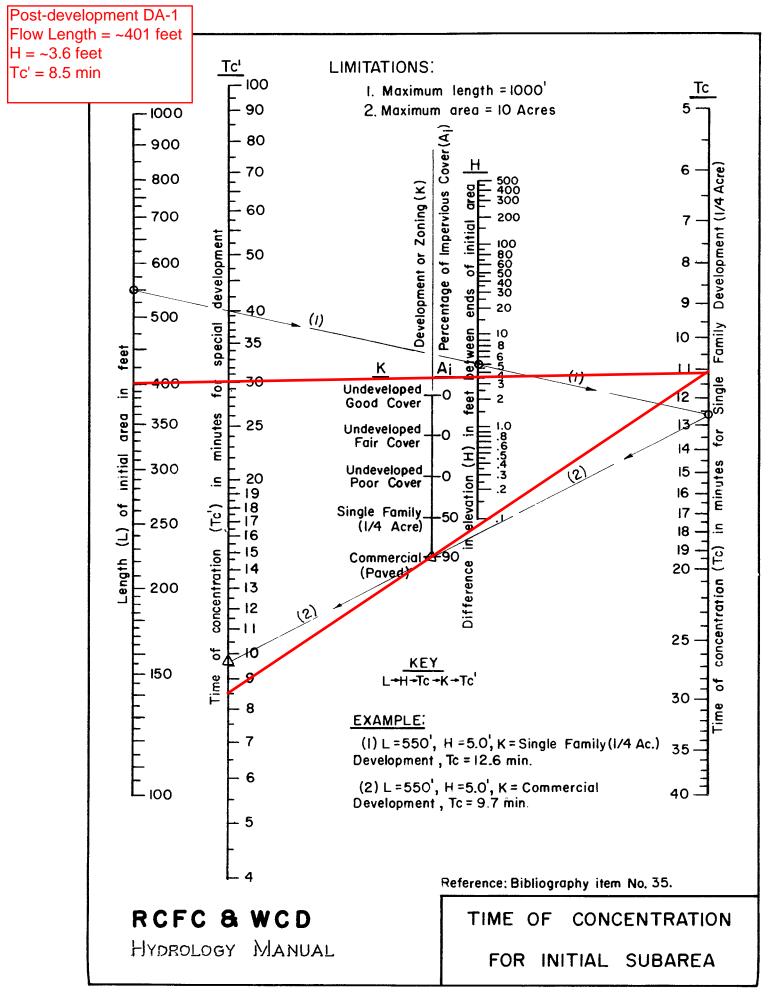
	POST-DEVELOPMENT										
Drainage	Α	Soils	CN	CN	S	la	P ₂₄	Y	V		
Area	(Acres)	Group	AMC II	AMC I					(Ac-ft)		
А	0.40	С	90	81	2.35	0.47	1.96	0.30	0.019		
В	1.87	С	90	81	2.35	0.47	1.96	0.30	0.090		
								TOTAL	0.110		

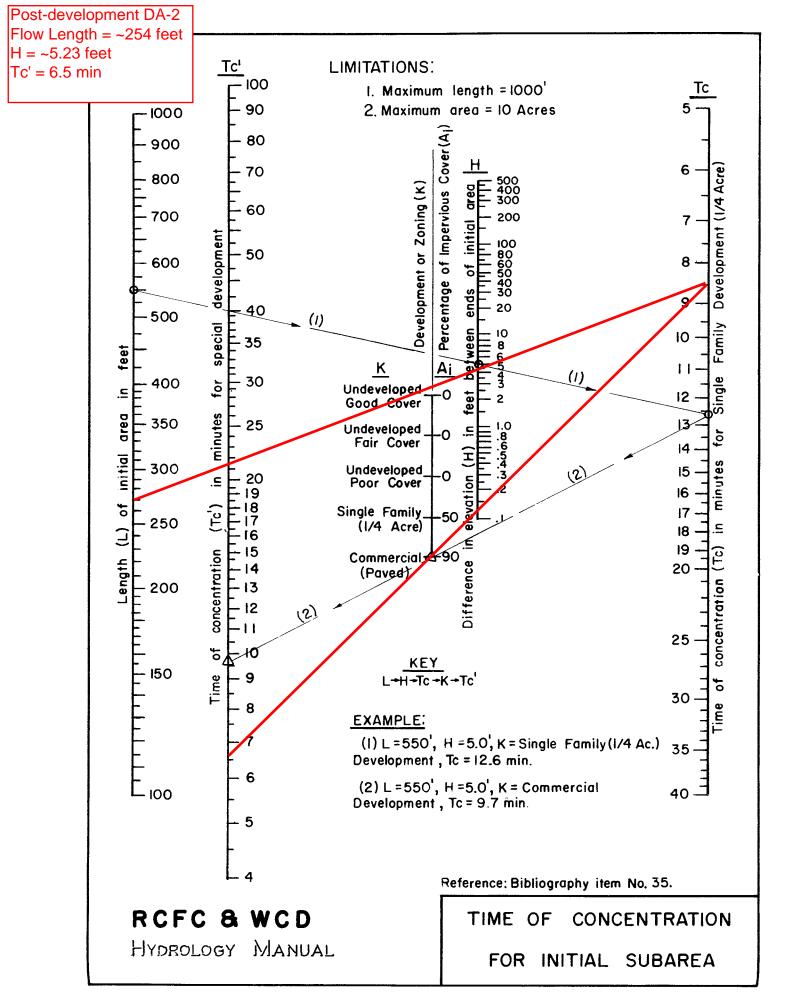
Return Frequency = 10 Years, 24 hour

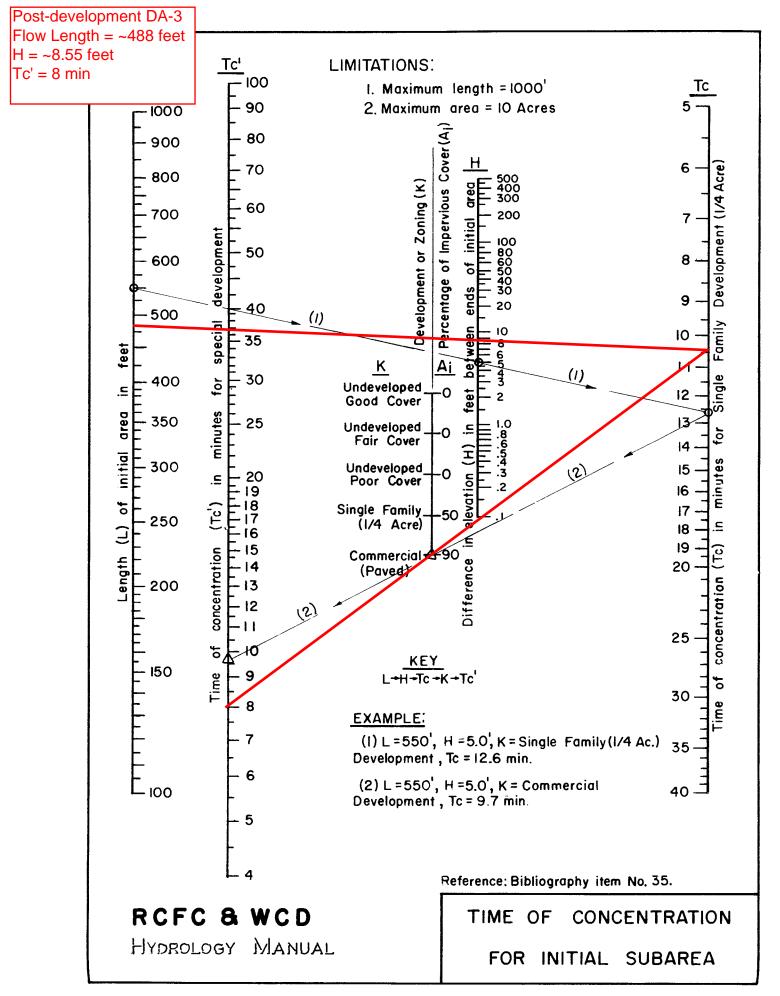
	PRE-DEVELOPMENT										
Drainage	Α	Soils	CN	CN	S	l _a	P ₂₄	Y	V		
Area	(acres)	Group	AMC II	AMC III					(Ac-ft)		
А	0.40	С	74	88	1.36	0.27	3.1	0.62	0.06		
В	1.87	С	74	88	1.36	0.27	3.1	0.62	0.30		
								TOTAL	0.361		

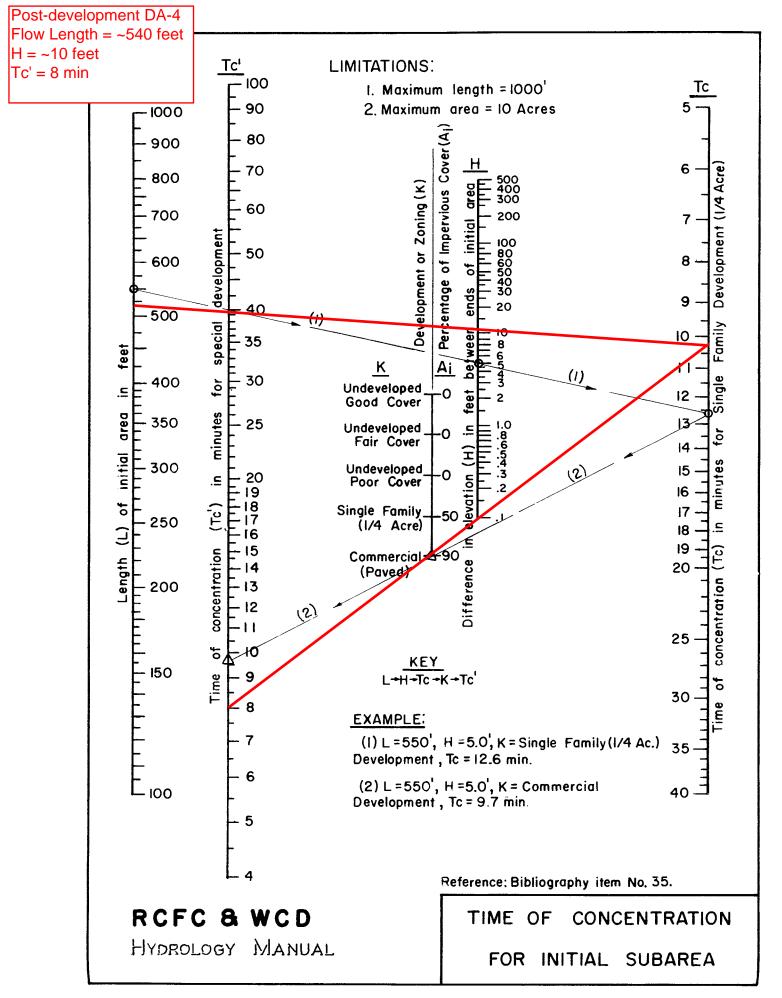
Return Frequency = 10 Years, 24 hour


	POST-DEVELOPMENT										
Drainage	Α	Soils	CN	CN	S	la	P ₂₄	Y	V		
Area	(acres)	Group	AMC II	AMC III					(Ac-ft)		
A	0.40	С	90	96	0.42	0.08	3.1	0.86	0.09		
В	1.87	С	90	96	0.42	0.08	3.1	0.86	0.413		
									0.501		


Return Frequency = 100 Years, 24 hour


	PRE-DEVELOPMENT OFFSITE									
Drainage	Α	Soils	CN	CN	S	la	P ₂₄	Y	V	
Area	(acres)	Group	AMC II	AMC III					(Ac-ft)	
А	0.40	С	74	88	1.36	0.27	4.83	0.73	0.12	
В	1.87	С	74	88	1.36	0.27	4.83	0.73	0.55	
								TOTAL	0.664	


Return Frequency = 100 Years, 24 hour


	POST-DEVELOPMENT OFF SITE									
Drainage	Α	Soils	CN	CN	S	la	P ₂₄	Y	V	
Area	(acres)	Group	AMC II	AMC III					(Ac-ft)	
A	0.40	С	90	96	0.42	0.08	4.83	0.90	0.15	
В	1.87	С	90	96	0.42	0.08	4.83	0.90	0.680	
								TOTAL	0.825	

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 6, Version 2 Location name: Moreno Valley, California, USA* Latitude: 33.9183°, Longitude: -117.2099° Elevation: 1586.5 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹									
Duration				Avera	ge recurren	ce interval (y	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	1.09	1.48	1.99	2.42	3.01	3.48	3.95	4.45	5.14	5.68
	(0.912-1.32)	(1.24-1.79)	(1.66-2.42)	(1.99-2.98)	(2.40-3.83)	(2.71-4.51)	(3.00-5.26)	(3.29-6.10)	(3.64-7.34)	(3.88-8.41)
10-min	0.780	1.06	1.43	1.73	2.16	2.49	2.83	3.19	3.68	4.07
	(0.648-0.942)	(0.882-1.28)	(1.19-1.74)	(1.43-2.13)	(1.72-2.74)	(1.94-3.23)	(2.15-3.77)	(2.35-4.37)	(2.60-5.26)	(2.78-6.03)
15-min	0.628	0.852	1.15	1.40	1.74	2.01	2.28	2.57	2.97	3.28
	(0.524-0.760)	(0.712-1.04)	(0.960-1.40)	(1.15-1.72)	(1.39-2.21)	(1.56-2.60)	(1.74-3.04)	(1.90-3.52)	(2.10-4.24)	(2.24-4.86)
30-min	0.498	0.678	0.916	1.11	1.38	1.60	1.81	2.04	2.36	2.61
	(0.416-0.604)	(0.564-0.822)	(0.760-1.11)	(0.916-1.36)	(1.10-1.75)	(1.24-2.07)	(1.38-2.41)	(1.51-2.80)	(1.67-3.37)	(1.78-3.86)
60-min	0.349	0.475	0.641	0.778	0.968	1.12	1.27	1.43	1.65	1.83
	(0.292-0.423)	(0.396-0.575)	(0.533-0.779)	(0.642-0.954)	(0.771-1.23)	(0.870-1.45)	(0.964-1.69)	(1.06-1.96)	(1.17-2.36)	(1.24-2.70)
2-hr	0.259 (0.216-0.314)	0.340 (0.284-0.412)	0.446 (0.372-0.543)	0.534 (0.440-0.655)	0.654 (0.521-0.830)	0.748 (0.582-0.969)	0.842 (0.640-1.12)	0.941 (0.694-1.29)	1.08 (0.760-1.54)	1.18 (0.806-1.75)
3-hr	0.214	0.277	0.361	0.430	0.523	0.595	0.668	0.745	0.848	0.928
	(0.178-0.259)	(0.231-0.336)	(0.300-0.439)	(0.354-0.526)	(0.416-0.663)	(0.464-0.772)	(0.507-0.889)	(0.549-1.02)	(0.599-1.21)	(0.633-1.38)
6-hr	0.150	0.193	0.249	0.296	0.358	0.406	0.454	0.504	0.572	0.624
	(0.125-0.182)	(0.161-0.234)	(0.207-0.303)	(0.244-0.362)	(0.285-0.454)	(0.316-0.526)	(0.345-0.604)	(0.372-0.691)	(0.404-0.818)	(0.426-0.925)
12-hr	0.096	0.125	0.163	0.193	0.235	0.266	0.298	0.331	0.375	0.408
	(0.080-0.116)	(0.104-0.152)	(0.135-0.198)	(0.159-0.237)	(0.187-0.298)	(0.207-0.345)	(0.226-0.397)	(0.244-0.453)	(0.265-0.536)	(0.278-0.605)
24-hr	0.061	0.082	0.108	0.129	0.158	0.179	0.201	0.224	0.254	0.277
	(0.054-0.071)	(0.072-0.094)	(0.095-0.125)	(0.113-0.151)	(0.134-0.190)	(0.149-0.221)	(0.163-0.254)	(0.176-0.290)	(0.192-0.342)	(0.203-0.386)
2-day	0.036	0.048	0.065	0.078	0.096	0.110	0.123	0.138	0.157	0.171
	(0.032-0.041)	(0.043-0.056)	(0.057-0.075)	(0.068-0.091)	(0.081-0.116)	(0.091-0.135)	(0.100-0.155)	(0.108-0.178)	(0.119-0.211)	(0.125-0.239)
3-day	0.025	0.035	0.047	0.057	0.070	0.080	0.091	0.101	0.116	0.127
	(0.022-0.029)	(0.031-0.040)	(0.041-0.054)	(0.049-0.066)	(0.059-0.084)	(0.067-0.099)	(0.073-0.114)	(0.080-0.131)	(0.088-0.156)	(0.093-0.177)
4-day	0.020	0.028	0.038	0.047	0.058	0.067	0.076	0.085	0.097	0.107
	(0.018-0.024)	(0.025-0.033)	(0.034-0.044)	(0.041-0.055)	(0.049-0.070)	(0.055-0.082)	(0.061-0.095)	(0.067-0.110)	(0.074-0.131)	(0.078-0.149)
7-day	0.013	0.018	0.025	0.031	0.038	0.044	0.050	0.057	0.065	0.072
	(0.011-0.015)	(0.016-0.021)	(0.022-0.029)	(0.027-0.036)	(0.032-0.046)	(0.037-0.054)	(0.041-0.063)	(0.045-0.073)	(0.050-0.088)	(0.053-0.101)
10-day	0.009	0.013	0.018	0.023	0.029	0.033	0.038	0.043	0.050	0.055
	(0.008-0.011)	(0.012-0.015)	(0.016-0.021)	(0.020-0.026)	(0.024-0.034)	(0.028-0.041)	(0.031-0.048)	(0.034-0.055)	(0.038-0.067)	(0.040-0.076)
20-day	0.005	0.008	0.011	0.014	0.017	0.020	0.023	0.027	0.031	0.035
	(0.005-0.006)	(0.007-0.009)	(0.010-0.013)	(0.012-0.016)	(0.015-0.021)	(0.017-0.025)	(0.019-0.030)	(0.021-0.035)	(0.024-0.042)	(0.025-0.049)
30-day	0.004	0.006	0.008	0.010	0.013	0.016	0.018	0.021	0.025	0.028
	(0.004-0.005)	(0.005-0.007)	(0.007-0.010)	(0.009-0.012)	(0.011-0.016)	(0.013-0.019)	(0.015-0.023)	(0.016-0.027)	(0.019-0.033)	(0.020-0.038)
45-day	0.003	0.005	0.006	0.008	0.010	0.012	0.014	0.016	0.019	0.022
	(0.003-0.004)	(0.004-0.005)	(0.006-0.007)	(0.007-0.009)	(0.009-0.013)	(0.010-0.015)	(0.012-0.018)	(0.013-0.021)	(0.015-0.026)	(0.016-0.031)
60-day	0.003 (0.002-0.003)	0.004 (0.003-0.004)	0.005 (0.005-0.006)	0.007 (0.006-0.008)	0.009 (0.007-0.010)	0.010 (0.009-0.013)	0.012 (0.010-0.015)	0.014 (0.011-0.018)	0.016 (0.012-0.022)	0.019

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 6, Version 2 Location name: Moreno Valley, California, USA* Latitude: 33.9183°, Longitude: -117.2099° Elevation: 1586.5 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

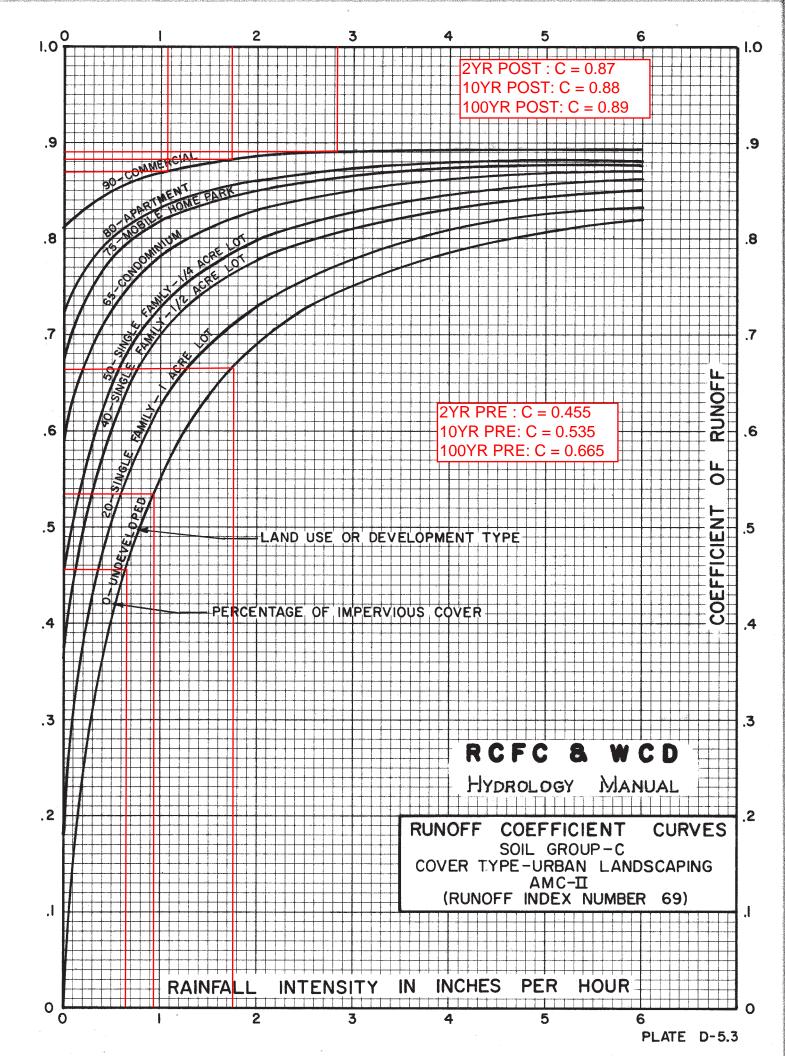
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

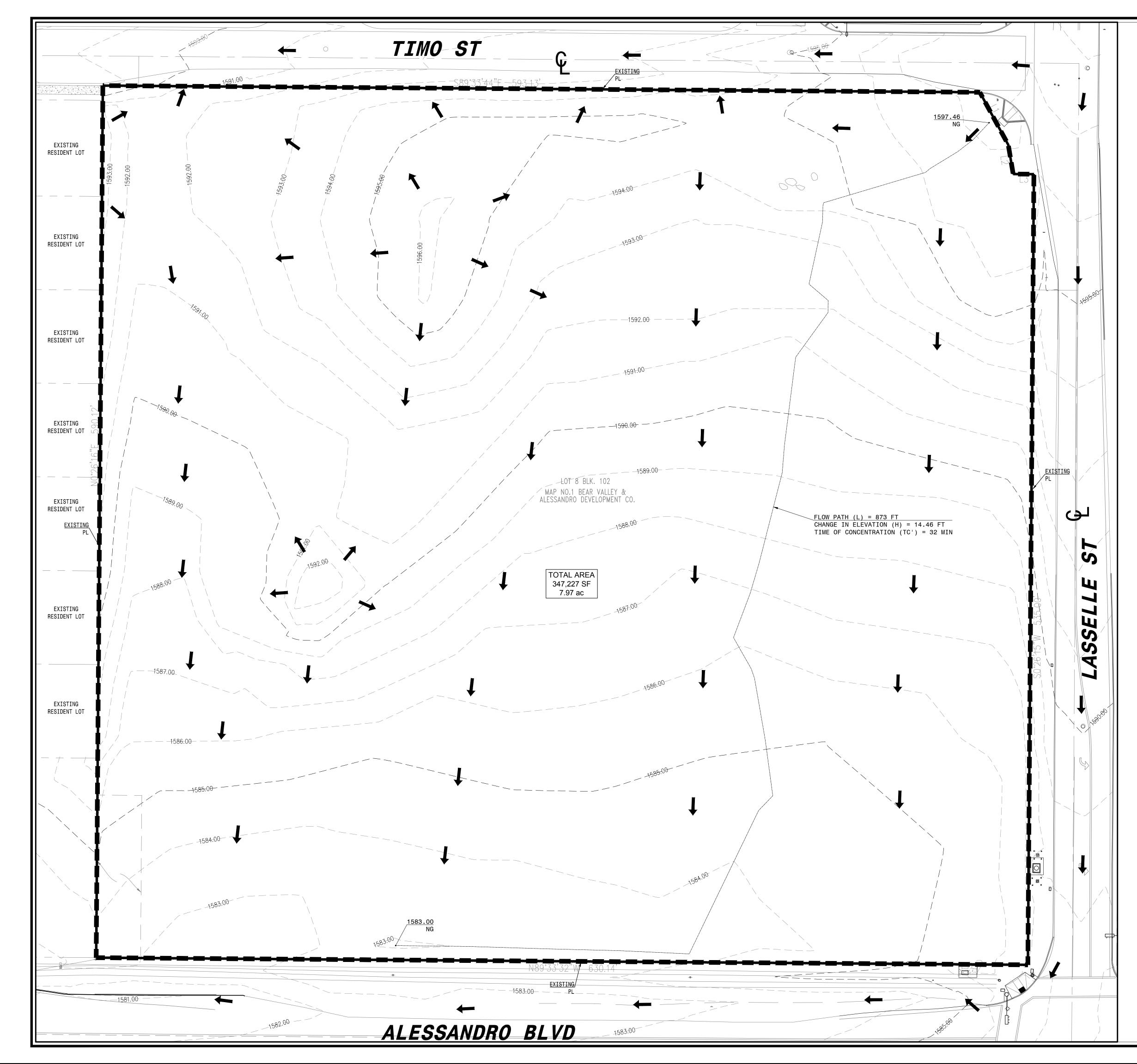
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PD	S-based p	point prec	ipitation f	requency	estimates	with 90%	confiden	ce interva	lls (in inch	ies) ¹
Duration				Avera	ge recurren	ce interval (y	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.091	0.123	0.166	0.202	0.251	0.290	0.329	0.371	0.428	0.473
	(0.076-0.110)	(0.103-0.149)	(0.138-0.202)	(0.166-0.248)	(0.200-0.319)	(0.226-0.376)	(0.250-0.438)	(0.274-0.508)	(0.303-0.612)	(0.323-0.701)
10-min	0.130	0.176	0.238	0.289	0.360	0.415	0.472	0.532	0.614	0.679
	(0.108-0.157)	(0.147-0.214)	(0.198-0.290)	(0.239-0.355)	(0.287-0.457)	(0.323-0.538)	(0.359-0.628)	(0.392-0.728)	(0.434-0.877)	(0.463-1.00)
15-min	0.157	0.213	0.288	0.350	0.435	0.502	0.571	0.643	0.742	0.821
	(0.131-0.190)	(0.178-0.259)	(0.240-0.350)	(0.288-0.429)	(0.347-0.552)	(0.391-0.651)	(0.434-0.760)	(0.474-0.880)	(0.524-1.06)	(0.559-1.22)
30-min	0.249	0.339	0.458	0.556	0.692	0.798	0.907	1.02	1.18	1.30
	(0.208-0.302)	(0.282-0.411)	(0.380-0.556)	(0.458-0.681)	(0.550-0.877)	(0.621-1.03)	(0.689-1.21)	(0.753-1.40)	(0.833-1.69)	(0.889-1.93)
60-min	0.349	0.475	0.641	0.778	0.968	1.12	1.27	1.43	1.65	1.83
	(0.292-0.423)	(0.396-0.575)	(0.533-0.779)	(0.642-0.954)	(0.771-1.23)	(0.870-1.45)	(0.964-1.69)	(1.06-1.96)	(1.17-2.36)	(1.24-2.70)
2-hr	0.518	0.680	0.893	1.07	1.31	1.50	1.69	1.88	2.15	2.36
	(0.432-0.627)	(0.567-0.824)	(0.743-1.09)	(0.881-1.31)	(1.04-1.66)	(1.16-1.94)	(1.28-2.24)	(1.39-2.58)	(1.52-3.08)	(1.61-3.50)
3-hr	0.642	0.833	1.08	1.29	1.57	1.79	2.01	2.24	2.55	2.79
	(0.536-0.777)	(0.694-1.01)	(0.901-1.32)	(1.06-1.58)	(1.25-1.99)	(1.39-2.32)	(1.52-2.67)	(1.65-3.06)	(1.80-3.64)	(1.90-4.13)
6-hr	0.898	1.16	1.49	1.77	2.14	2.43	2.72	3.02	3.43	3.74
	(0.750-1.09)	(0.964-1.40)	(1.24-1.82)	(1.46-2.17)	(1.71-2.72)	(1.89-3.15)	(2.07-3.62)	(2.23-4.14)	(2.42-4.90)	(2.55-5.54)
12-hr	1.16	1.51	1.96	2.33	2.83	3.21	3.59	3.99	4.51	4.92
	(0.966-1.40)	(1.26-1.83)	(1.63-2.38)	(1.92-2.86)	(2.25-3.59)	(2.50-4.16)	(2.73-4.78)	(2.94-5.46)	(3.19-6.45)	(3.36-7.29)
24-hr	1.48	1.96	2.59	3.10	3.79	4.31	4.83	5.37	6.09	6.64
	(1.31-1.70)	(1.73-2.26)	(2.28-3.00)	(2.71-3.62)	(3.21-4.56)	(3.57-5.30)	(3.92-6.09)	(4.23-6.95)	(4.61-8.21)	(4.86-9.26)
2-day	1.72 (1.52-1.98)	2.32 (2.05-2.68)	3.11 (2.74-3.60)	3.75 (3.28-4.37)	4.61 (3.90-5.55)	5.26 (4.37-6.47)	5.93 (4.80-7.46)	6.60 (5.21-8.55)	7.52 (5.69-10.1)	8.22 (6.02-11.5)
3-day	1.82 (1.61-2.10)	2.48 (2.20-2.87)	3.36 (2.96-3.89)	4.07 (3.56-4.75)	5.03 (4.26-6.07)	5.77 (4.79-7.10)	6.52 (5.28-8.21)	7.29 (5.75-9.44)	8.33 (6.31-11.2)	9.14 (6.69-12.7)
4-day	1.96 (1.74-2.27)	2.71 (2.39-3.13)	3.69 (3.25-4.27)	4.49 (3.92-5.24)	5.57 (4.72-6.72)	6.41 (5.32-7.89)	7.26 (5.88-9.15)	8.14 (6.42-10.5)	9.34 (7.07-12.6)	10.3 (7.51-14.3)
7-day	2.16	3.03	4.18	5.13	6.43	7.44	8.47	9.53	11.0	12.1
	(1.91-2.49)	(2.68-3.50)	(3.69-4.84)	(4.49-5.99)	(5.45-7.75)	(6.17-9.15)	(6.86-10.7)	(7.52-12.3)	(8.32-14.8)	(8.87-16.9)
10-day	2.23 (1.97-2.57)	3.16 (2.79-3.65)	4.41 (3.88-5.10)	5.44 (4.75-6.34)	6.86 (5.81-8.26)	7.96 (6.61-9.79)	9.10 (7.37-11.5)	10.3 (8.10-13.3)	11.9 (9.01-16.0)	13.2 (9.64-18.3)
20-day	2.58 (2.28-2.98)	3.71 (3.28-4.28)	5.25 (4.62-6.07)	6.53 (5.71-7.62)	8.34 (7.06-10.1)	9.77 (8.11-12.0)	11.3 (9.12-14.2)	12.8 (10.1-16.6)	15.0 (11.4-20.2)	16.7 (12.2-23.3)
30-day	2.96 (2.62-3.41)	4.24 (3.75-4.90)	6.02 (5.30-6.97)	7.52 (6.58-8.78)	9.66 (8.18-11.6)	11.4 (9.44-14.0)	13.2 (10.7-16.6)	15.1 (11.9-19.5)	17.7 (13.4-23.9)	19.8 (14.5-27.7)
45-day	3.47 (3.07-4.00)	4.92 (4.35-5.68)	6.95 (6.13-8.04)	8.70 (7.60-10.1)	11.2 (9.50-13.5)	13.3 (11.0-16.3)	15.4 (12.5-19.4)	17.7 (14.0-22.9)	21.0 (15.9-28.3)	23.6 (17.3-33.0)
60-day	3.94 (3.49-4.54)	5.51 (4.87-6.36)	7.73 (6.81-8.95)	9.66 (8.45-11.3)	12.5 (10.6-15.0)	14.8 (12.3-18.2)	17.2 (14.0-21.7)	19.9 (15.7-25.7)	23.7 (17.9-31.9)	26.8 (19.6-37.3)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

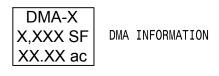
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

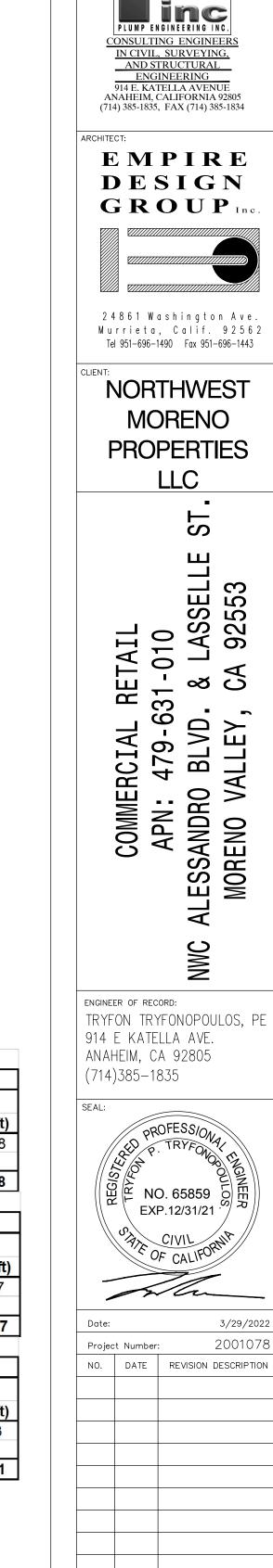

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Attachment 2 Hydrology Exhibits



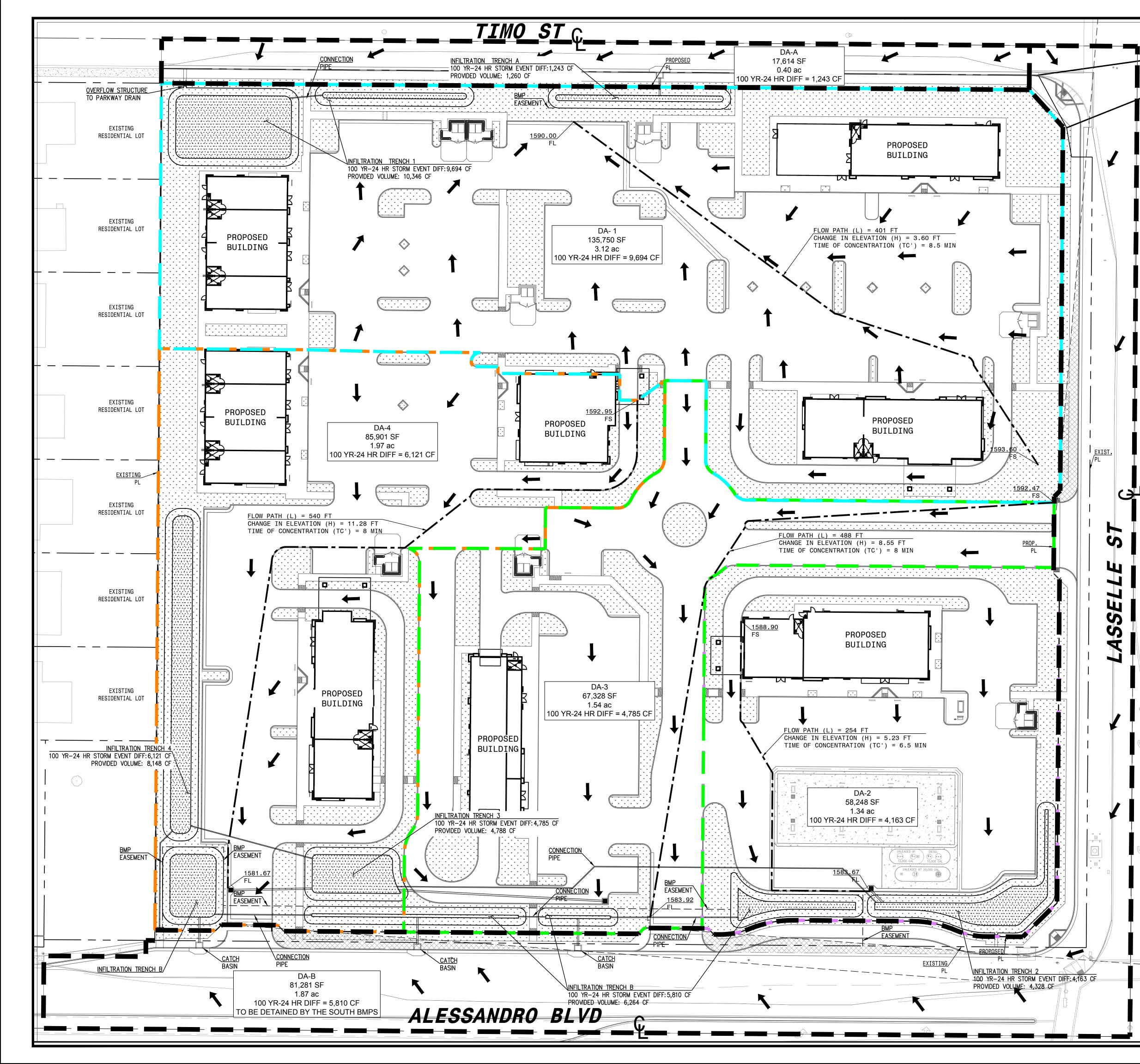

LEGEND:

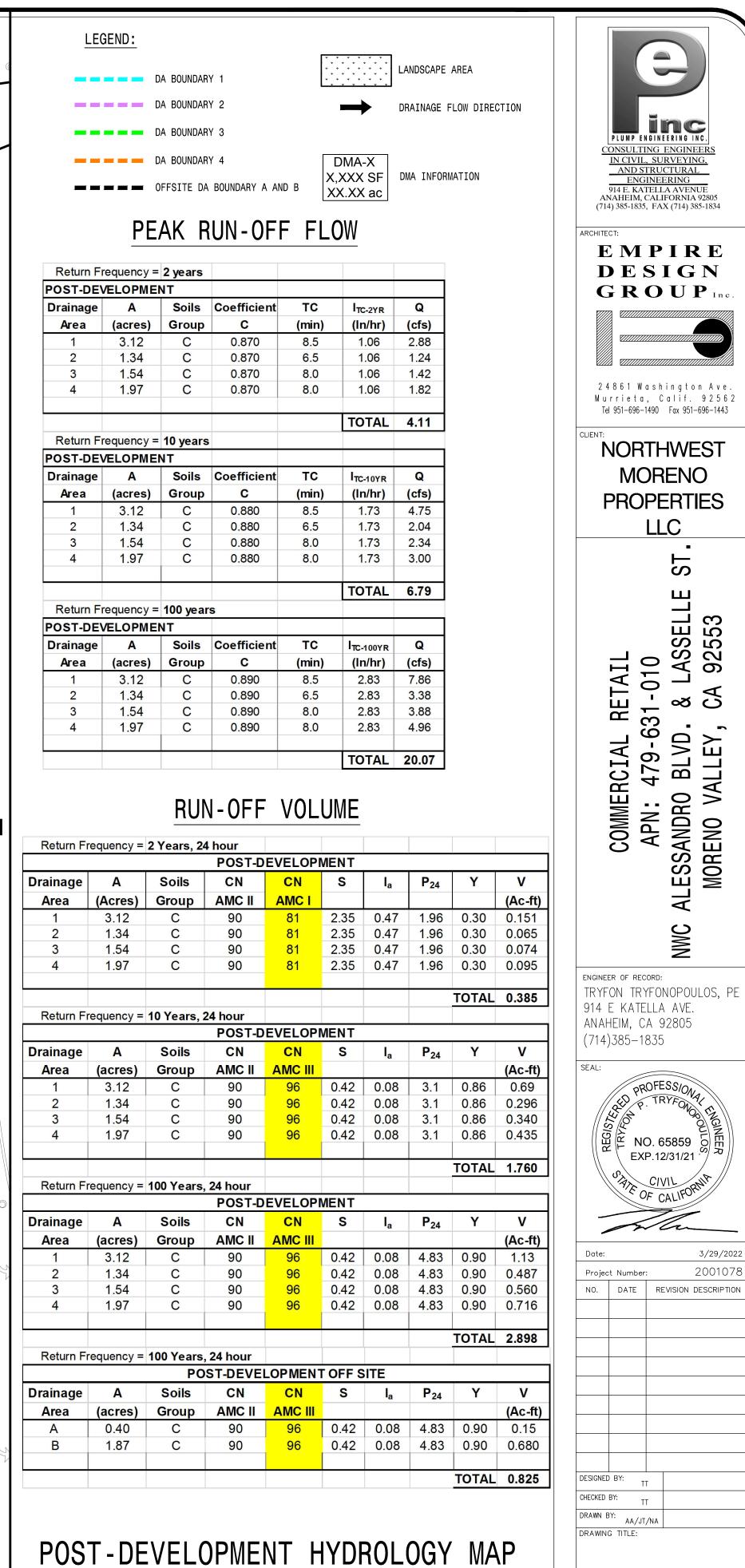
PARCEL BOUNDARY

PEAK RUN-OFF FLOW

Return Fi	requency =	2 years				
PRE-DEVE		г				
Drainage	Α	Soils	Coefficient	тс	I _{TC-2YR}	Q
Area	(acres)	Group	С	(min)	(ln/hr)	(cfs)
TOTAL	7.97	C	0.455	32	0.678	2.46
					TOTAL	2.46
Return Fi	requency =	10 years				
PRE-DEVE		Г				
Drainage	Α	Soils	Coefficient	тс	I _{TC-10YR}	Q
Area	(acres)	Group	С	(min)	(ln/hr)	(cfs)
TOTAL	7.97	C	0.535	32	0.916	3.91
					TOTAL	3.91
Return Fi	requency =	100 year	S			
PRE-DEVE						
Drainage	Α	Soils	Coefficient	тс	ITC-100YR	Q
Area	(acres)	Group	C	(min)	(ln/hr)	(cfs)
TOTAL	7.97	С	0.665	32	1.84	9.75
					TOTAL	9.75

RUN-OFF VOLUME


requency =	2 Years, 2	4 hour						
		PRE-DI	EVELOPN	IENT				
Α	Soils	CN	CN	S	la	P ₂₄	Y	V
(acres)	Group	AMC II	AMC I					(Ac-ft)
7.97	С	74	55	<mark>8.18</mark>	1.64	1.96	0.01	0.008
							TOTAL	0.008
requency =	10 Years,	24 hour						
		PRE-D		IENT				
Α	Soils	CN	CN	S	la	P ₂₄	Y	V
(acres)	Group	AMC II	AMC III					(Ac-ft)
7.97	С	74	88	1.36	0.27	3.1	0.62	1.27
							TOTAL	1.267
requency =	100 Years	, 24 hour						
		PRE-DE	EVELOPM	IENT				
Α	Soils	CN	CN	S	la	P ₂₄	Y	V
(acres)	Group	AMC II	AMC III					(Ac-ft)
7.97	С	74	88	1.36	0.27	4.83	0.73	2.33
							TOTAL	2.331
	A (acres) 7.97 requency = A (acres) 7.97 requency = A (acres)	ASoils(acres)Group7.97Crequency =10 Years,ASoils(acres)Group7.97Crequency =100 YearsacresImage: Complex structureASoilsASoilsGroupImage: Complex structureASoilsGroupImage: Complex structureASoils(acres)Group	A Soils CN (acres) Group AMC II 7.97 C 74 7.97 C 74 requency = 10 Years, 24 hour requency = 10 Years, 24 hour PRE-DI PRE-DI A Soils CN (acres) Group AMC II 7.97 C 74 7 7 7	ASoilsCNCN(acres)GroupAMC IIAMC I7.97C7455requency =10 Years, 24 hourImage: Constraint of the second secon	PRE-DEVELOPMENTASoilsCNCNS(acres)GroupAMC IIAMC IAMC I7.97C74558.18requency =10 Years, 24 hourImage: CNImage: CNImage: CNASoilsCNCNS(acres)GroupAMC IIAMC IIIImage: CNImage: CN7.97C74881.367.97C74881.367.97C74SoilsImage: CNrequency =100 Years, 24 hourImage: CNImage: CN7.97C74SoilsImage: CN7.97C74SoilsImage: CN7.97C74SoilsImage: CNASoilsCNCNSASoilsCNCNS(acres)GroupAMC IIAMC IIIASoilsCNCNS(acres)GroupAMC IIAMC III	PRE-DEVELOPMENT A Soils CN CN S Ia (acres) Group AMC II AMC I AMC I AMC I 7.97 C 74 55 8.18 1.64 7.97 C 74 55 8.18 1.64 requency = 10 Years, 24 hour Image: CN <	PRE-DEVELOPMENTASoilsCNCNS I_a P_{24} (acres)GroupAMC IIAMC III7.97C74558.181.641.967.97C74558.181.641.96requency =10 Years, 24 hourIIIIPRE-DEVELOPMENTASoilsCNCNS I_a P_{24} (acres)GroupAMC IIAMC IIIIII7.97C74881.360.273.17.97C74881.360.273.17.97C74881.360.273.1requency =100 Years, 24 hourIIII7.97C74881.360.273.17.97C74881.360.273.17.97C74881.361.0I7.97C74881.360.273.17.97C74881.360.273.17.97C74881.360.273.17.97C74881.360.273.17.97C74881.360.273.17.97C74881.360.273.17.97C74881.361.47 <t< td=""><td>PRE-DEVELOPMENTASoilsCNCNS$I_a$$P_{24}$Y(acres)GroupAMC IIAMC IAMC IIII7.97C74558.181.641.960.017.97C74558.181.641.960.01requency = 10 Years, 24 hourIIIIPRE-DEVELOPMENTASoilsCNCNS$I_a$$P_{24}$Y(acres)GroupAMC IIAMC IIIIII7.97C74881.360.273.10.627.97C74881.360.273.10.62Image: Colspan="6">PRE-DEVELOPMENT7.97C74881.360.273.10.62Image: Colspan="6">PRE-DEVELOPMENTASoilsCNCNS$I_a$$P_{24}$YASoilsCNCNS$I_a$$P_{24}$YASoilsCNCNS$I_a$$P_{24}$Y</td></t<>	PRE-DEVELOPMENTASoilsCNCNS I_a P_{24} Y(acres)GroupAMC IIAMC IAMC IIII7.97C74558.181.641.960.017.97C74558.181.641.960.01requency = 10 Years, 24 hourIIIIPRE-DEVELOPMENTASoilsCNCNS I_a P_{24} Y(acres)GroupAMC IIAMC IIIIII7.97C74881.360.273.10.627.97C74881.360.273.10.62Image: Colspan="6">PRE-DEVELOPMENT7.97C74881.360.273.10.62Image: Colspan="6">PRE-DEVELOPMENTASoilsCNCNS I_a P_{24} YASoilsCNCNS I_a P_{24} YASoilsCNCNS I_a P_{24} Y


PRE-DEVELOPMENT HYDROLOGY MAP PEN21-0273 (LST21-0081) (LWQ21-0062) SCALE: 1" = 30'

DRAWN BY: AA/JT/NA DRAWING TITLE:

DESIGNED BY: TT CHECKED BY: TT

SHEET NO:

*NOTE: ADDITIONAL CAPACITY PROVIDED TO DETAIN THE DIFFERENCE BETWEEN THE PRE AND POST-DEVELOPMENT, 100-YR 24-HR STORM EVENTS. (31,816 CUBIC FEET)

TOTAL VOLUME PROVIDED BY INFILTRATION TRENCHES IS 34,093 CUBIC FEET, MEETING THE REQUIRED AMOUNT.

SCALE: 1" = 30'

30' 60'

PEN21-0273

(LST21-0081)

(LWQ21-0062)

SHEET NO:

Attachment 3 Infiltration Trench Calculations

Infiltration Trench	- Design Procedure	BMP ID	Legend	1	ired Entr ulated Ce			
minutation Trenen	iltration Trench - Design Procedure INF-1 Legend: -							
Company Name:	Plump Engineer	ring inc.		Date:	3/29/2	2022		
Designed by:			County/City C	ase No.:				
		Design Volume						
Enter the area tribut	tary to this feature, Max	= 10 acres		A _t =	3	acres		
Enter V_{BMP} determi	ned from Section 2.1 of	this Handbook		V _{BMP} =	9,694	ft ³		
	Calculate Maximi	um Depth of the	Reservoir Layer					
Enter Infiltration ra	te			I =	2.6	in/hr		
Enter Factor of Safe	ety, FS (unitless)			FS =	3			
	l, Appendix A: "Infiltrati	ion Testing" of th	is BMP Handbook			_		
				n =	40	%		
Calculate D ₁ .	$D_1 = I (in/hr)$			$D_1 =$	12.85	ft		
	12 (in/ft) x	(n /100) x FS						
Enter depth to histo	ric high groundwater ma	rk (measured fro	m finished grade)		20	ft		
Enter depth to top o	of bedrock or impermeab	le layer (measure	d from finished gr	ade)	15	ft		
D_2 is the smaller of	:			_				
Depth to groundwat	ter - 11 ft; & Depth to im	permeable layer	- 6 ft	$D_2 =$	9.0	ft		
D_{MAX} is the smaller	value of D_1 and D_{2} , must	st be less than or	equal to 8 feet.	D _{MAX} =	8.0	ft		
		Trench Sizing						
Enter proposed rese	ervoir layer depth D _R , mu	ist be $\leq D_{MAX}$		$D_R =$	7.00	ft		
Calculate the design	n depth of water, d_W			_				
	Design $d_W =$	(D _R) x (n/100)	De	sign d _w =	2.80	ft		
Minimum Surface A	Area, A_s $A_s=$	V _{BMP}		$A_{S} =$	3,462	ft ²		
		d _w						
Proposed Design Su	urface Area			$A_D =$	3,695	ft^2		
		Minimum Widt	$n = D_R + 1$ foot pe	a gravel	8.00	ft		
Sediment Control P	rovided? (Use pulldown))						
Geotechnical report	attached? (Use pulldow)	n) Yes						
Notes: $V = dw$	If the trench has been designed corr $\tau * \Delta d$	rectly, there should be no e	rror messages on the spreads	sheet.				
$v = \frac{v - dw}{1}$	Au							

Infiltration Tranch	- Design Procedure	BMP ID	Legend:	Req	uired Entr	ies			
	- Design Procedure	INF-2	Legend.	Calo	culated Ce	lls			
Company Name:	Plump Enginee	ring inc.		Date:	3/29/2	022			
Designed by:			County/City C	Case No.:					
]	Design Volume							
Enter the area tribut	tary to this feature, Max	= 10 acres		$A_t =$	1	acres			
Enter V _{BMP} determi	ned from Section 2.1 of	this Handbook		V _{BMP} =	4,163	ft ³			
	Calculate Maximi	um Depth of the	Reservoir Layer						
Enter Infiltration ra	te			I =	1.6	in/hr			
Enter Factor of Safe	Enter Factor of Safety, FS (unitless) FS =								
Obtain from Table		-							
				n =	40	%			
Calculate D ₁ .	$D_1 = I (in/hr)$	x 72 hrs		D ₁ =	8.00	ft			
	12 (in/ft) x	(n /100) x FS		-					
Enter depth to histo	ric high groundwater ma	ark (measured fro	om finished grade)	20	ft			
Enter depth to top o	of bedrock or impermeab	le layer (measure	ed from finished g	grade)	15	ft			
D_2 is the smaller of	:			-					
Depth to groundway	ter - 11 ft; & Depth to in	permeable layer	- 6 ft	D ₂ =	9.0	ft			
D _{MAX} is the smaller	value of D_1 and D_{2} , must	st be less than or	equal to 8 feet.	$D_{MAX} =$	8.0	ft			
		Trench Sizing							
Enter proposed rese	ervoir layer depth D _R , m	ust be $\leq D_{MAX}$		$D_R =$	7.00	ft			
Calculate the design	n depth of water, d_{W}								
	Design $d_W =$	(D _R) x (n/100)	De	esign d _w =	2.80	ft			
Minimum Surface A	Area, A_s $A_s=$	V _{BMP}		$A_{S} =$	1,487	ft^2			
		d _W				-			
Proposed Design Su	urface Area			$A_D =$	1,545	ft^2			
		Minimum Width	$n = D_R + 1$ foot pe	a gravel	8.00	ft			
Sediment Control P	Sediment Control Provided? (Use pulldown)								
Geotechnical report	t attached? (Use pulldow	rn) Yes							
Notes: $V = dw$	If the trench has been designed correctly, there should be no error messages on the spreadsheet. Notes: $V = dw * Ad$								
Notes: $v = dw$ V = 4.327.7 CF	Au								

Infiltration Tranch	Design Procedure	BMP ID	Legend:	Req	uired Entr	ies		
	INF-3							
Company Name:	Plump Enginee	ring inc.		Date:	3/29/2	022		
Designed by:			County/City C	Case No.:				
]	Design Volume						
Enter the area tribut	tary to this feature, Max	= 10 acres		$A_t =$	2	acres		
Enter V _{BMP} determi	ned from Section 2.1 of	this Handbook		V _{BMP} =	4,785	ft ³		
	Calculate Maximi	um Depth of the	Reservoir Layer					
Enter Infiltration ra	te			I =	1.6	in/hr		
Enter Factor of Safe	etv. FS (unitless)			FS =	3	_		
	l, Appendix A: "Infiltrat	ion Testing" of th	his BMP Handboo	- bk		_		
				n =	40	%		
Calculate D ₁ .	$D_1 = I (in/hr)$	x 72 hrs		$D_1 =$	8.00	ft		
	12 (in/ft) x	(n /100) x FS						
Enter depth to histo	ric high groundwater ma	ark (measured fro	om finished grade)	20	ft		
Enter depth to top o	of bedrock or impermeab	le layer (measure	ed from finished g	grade)	15	ft		
D_2 is the smaller of				-		_		
_	ter - 11 ft; & Depth to in	npermeable layer	- 6 ft	D ₂ =	9.0	ft		
D _{MAX} is the smaller	value of D_1 and D_{2} , must	st be less than or	equal to 8 feet.	D _{MAX} =	8.0	ft		
		Trench Sizing						
Enter proposed rese	ervoir layer depth D _R , m	ust be $\leq D_{MAX}$		$D_R =$	7.00	ft		
Calculate the design	n depth of water, d_{W}							
		(D _R) x (n/100)	De	esign d _w =	2.80	ft		
Minimum Surface A				$A_{\rm S} =$		$-\frac{11}{\text{ft}^2}$		
	Alca, A_S A_S^-	$\frac{V_{BMP}}{d_W}$		$A_{\rm S}$ –	1,709			
Proposed Design Su	urface Area	w		$A_D =$	1,710	ft^2		
		Minimum Width	$n = D_R + 1$ foot pe	a gravel	8.00	ft		
Sediment Control P	rovided? (Use pulldown)						
Geotechnical report	t attached? (Use pulldow	rn) Yes						
Notes: $V = dw$	If the trench has been designed corr $x * \Lambda d$	rectly, there should be no e	error messages on the spread	sheet.				
Notes: $v - dw$ V = 4 788 CF	Au							

Infiltration Tranch	- Design Procedure	BMP ID	Legend:	Req	uired Entr	ies					
	- Design Procedure	INF-4	Legend.	Calo	culated Ce	lls					
Company Name:	Plump Enginee	ring inc.		Date:	3/29/2	022					
Designed by:			County/City C	Case No.:							
]	Design Volume									
Enter the area tribut	tary to this feature, Max	= 10 acres		$A_t =$	2	acres					
Enter V _{BMP} determi	ned from Section 2.1 of	this Handbook		V _{BMP} =	6,121	ft ³					
Calculate Maximium Depth of the Reservoir Layer											
Enter Infiltration ra	te			I =	1.6	in/hr					
Enter Factor of Safe	Enter Factor of Safety, FS (unitless) FS =										
Obtain from Table .		-									
	n = 40 %										
Calculate D ₁ .	$D_1 = I (in/hr)$	x 72 hrs		$D_1 =$	8.00	ft					
	12 (in/ft) x	(n /100) x FS				-					
Enter depth to histo	ric high groundwater ma	ark (measured fro	om finished grade)	20	ft					
Enter depth to top o	f bedrock or impermeab	le layer (measure	ed from finished g	grade)	15	ft					
D_2 is the smaller of:	:			-		_					
Depth to groundwat	ter - 11 ft; & Depth to in	npermeable layer	- 6 ft	D ₂ =	9.0	ft					
D _{MAX} is the smaller	value of D_1 and D_{2} , must	st be less than or	equal to 8 feet.	D _{MAX} =	8.0	ft					
		Trench Sizing									
Enter proposed rese	ervoir layer depth D _R , m	ust be $\leq D_{MAX}$		$D_R =$	7.00	ft					
Calculate the design	n depth of water, d_W										
	Design $d_W =$	(D _R) x (n/100)	De	esign d _w =	2.80	ft					
Minimum Surface A	Area, A_s $A_s=$	V _{BMP}		$A_{s} =$	2,186	-ft ²					
		d_{W}									
Proposed Design Su	urface Area			$A_D =$	2,910	ft^2					
		Minimum Width	$n = D_R + 1$ foot pe	a gravel	8.00	ft					
Sediment Control P	Sediment Control Provided? (Use pulldown)										
Geotechnical report	attached? (Use pulldow	m) Yes									
Natasi V 1	If the trench has been designed correctly, there should be no error messages on the spreadsheet.										
Notes: $V = dw$ V = 8 148 CF	· Au										

Infiltration Tranch	- Design Procedure	BMP ID	Legend:	Requ	uired Entr	ies
	- Design Procedure	INF-A	Legend.	Calc	ulated Ce	lls
Company Name:	Plump Enginee	ring inc.		Date:	3/29/2	022
Designed by:			County/City C	Case No.:		
]	Design Volume				
Enter the area tribut	tary to this feature, Max	= 10 acres		$A_t =$	0	acres
Enter V _{BMP} determi	ined from Section 2.1 of	this Handbook		V _{BMP} =	1,243	ft ³
	Calculate Maximi	um Depth of the	Reservoir Layer			
Enter Infiltration ra	te			I =	1.6	in/hr
Enter Factor of Safe	ety, FS (unitless)			FS =	3	
Obtain from Table						
				n =	40	%
Calculate D ₁ .	$D_1 = I (in/hr)$	x 72 hrs		$D_1 =$	8.00	ft
	12 (in/ft) x	(n /100) x FS		-		_
Enter depth to histo	ric high groundwater ma	ark (measured fro	om finished grade)	20	ft
Enter depth to top o	of bedrock or impermeab	le layer (measure	ed from finished g	grade)	15	ft
D_2 is the smaller of:				-		-
Depth to groundwat	ter - 11 ft; & Depth to in	npermeable layer	- 6 ft	D ₂ =	9.0	ft
D _{MAX} is the smaller	value of D_1 and D_{2} , must	st be less than or	equal to 8 feet.	D _{MAX} =	8.0	ft
		Trench Sizing				
Enter proposed rese	ervoir layer depth D _R , m	ust be $\leq D_{MAX}$		$D_R =$	7.00	ft
Calculate the design	n depth of water, d_W					
	Design $d_W =$	(D _R) x (n/100)	De	esign d _w =	2.80	ft
Minimum Surface A	Area, A_s $A_s=$	V _{BMP}		$A_{S} =$	444	ft^2
		d _w		-		-
Proposed Design Su	urface Area			$A_D =$	450	ft^2
		Minimum Width	$n = D_R + 1$ foot pe	a gravel	8.00	ft
Sediment Control P	Provided? (Use pulldown)				
Geotechnical report	t attached? (Use pulldow	vn) Yes				
Notori V 1	If the trench has been designed corr	rectly, there should be no e	rror messages on the spread	sheet.		
Notes: $V = dw$ V = 1.260.3 CF	Au					

Infiltration Tranch	Design Dressedures	BMP ID	Lagandu	Requ	uired Entr	ies			
Initiation Trench	- Design Procedure	INF-B	Legend:	Calc	ulated Ce	lls			
Company Name:	Plump Enginee	ring inc.		Date:	3/29/2	022			
Designed by:			County/City C	Case No.:					
]	Design Volume							
Enter the area tribut	tary to this feature, Max	= 10 acres		$A_t =$	2	acres			
Enter V _{BMP} determi	ned from Section 2.1 of	this Handbook		V _{BMP} =	5,810	ft ³			
	Calculate Maximi	um Depth of the	Reservoir Layer						
Enter Infiltration ra	te			I =	1.6	in/hr			
Enter Factor of Safe	Enter Factor of Safety, FS (unitless) FS =								
Obtain from Table .	l, Appendix A: "Infiltrat	ion Testing" of th	his BMP Handboo	ok –					
				n =	40	%			
Calculate D ₁ .	$D_1 = I (in/hr)$	x 72 hrs		$D_1 =$	8.00	ft			
	12 (in/ft) x	(n /100) x FS		_					
Enter depth to histo	ric high groundwater ma	ark (measured fro	om finished grade)	20	ft			
Enter depth to top o	of bedrock or impermeab	le layer (measure	ed from finished g	grade)	15	ft			
D_2 is the smaller of				-		_			
_	ter - 11 ft; & Depth to in	npermeable layer	- 6 ft	D ₂ =	9.0	ft			
D _{MAX} is the smaller	value of D_1 and D_{2} , must	st be less than or	equal to 8 feet.	D _{MAX} =	8.0	ft			
		Trench Sizing							
Enter proposed rese	ervoir layer depth D _R , m	ust be $\leq D_{MAX}$		$D_R =$	7.00	ft			
Calculate the design	n depth of water, d_{W}								
	Design $d_W =$	(D _R) x (n/100)	De	esign d _w =	2.80	ft			
Minimum Surface A	_	V _{BMP}			2,075	-ft ²			
	, , , , , , , , , , , , , , , , , , , ,				_,				
Proposed Design Su	urface Area			$A_D =$	2,237	ft^2			
		Minimum Width	$n = D_R + 1$ foot pe	a gravel	8.00	ft			
Sediment Control P	rovided? (Use pulldown)							
Geotechnical report	t attached? (Use pulldow	vn) Yes							
Notori V - 1	If the trench has been designed corr $* \land A$	rectly, there should be no e	rror messages on the spread	sheet.					
Notes: $V = dw$ V = 6.263.6 CF	Au								