APPENDIX J – SEWER STUDY

Moreno Valley Mall Redevelopment

Sewer Study

Moreno Valley, CA

March 2022

Kimley »Horn

TABLE OF CONTENTS

1. Introduction	1
Objective	1
Project Description	1
2. Analysis Criteria	2
Flow Estimation	3
Pipe Capacity	3
3. Sewer Analysis	5
Existing Sewer Facilities	5
Proposed Sewer Facilities	5
Sewer Service Capacity Check	6
4. Conclusion	8
5. References	9

LIST OF TABLES

Table 1 – Moreno Valley Mall Redevelopment Project Summary	2
Table 2 – Wastewater Flow Estimation Criteria	3
Table 3 – Pipe Capacity Design Criteria	4
Table 4 – Proposed Wastewater Flows	6
Table 5 – Proposed Sewer Hydraulics	6

APPENDICES

Existing and Proposed Sewer Exhibit	.Appendix A
EMWD Wastewater Collection Sewer Master Plan Planning and Sizing Criteria	.Appendix B
EMWD Sewer Design Standards	Appendix C
EMWD Sewer Map & Record Drawings	Appendix D
FlowMaster Calculations	.Appendix E

ACRONYMS

AC	Acre
APN	Assessor's Parcel Number
CFS	Cubic Feet Per Second
District	Eastern Municipal Water District
EDU	Equivalent Dwelling Units
EMWD	Eastern Municipal Water District
GPD/AC	Gallons per Day per Acre
GPM	Gallons per Minute
HDR	High Density Residential
Hwy	Highway
IN	Inch
LDR	Low Density Residential
LF	Linear Feet
MG	Million Gallons
MGD	Million Gallons per Day
MDR	Medium Density Residential
MHDR	Medium High Density Residential
OS-CH	Open Space-Conservation Habitat
OS-R	Open Space Recreation
OS-R/Basin	Open Space Recreation/Basin
PA	Planning Area
POC	Point of Connection
SP	Specific Plan

1. INTRODUCTION

Objective

Kimley-Horn was tasked with analyzing the existing and proposed sewer facilities which will serve the Moreno Valley Mall redevelopment (Project). The results of Kimley-Horn's analysis are presented in this Sewer Study.

Project Description

The Moreno Valley Mall Project is proposing to redevelop 58.6 of the existing 80.1 acres of the existing Moreno Valley Mall land area to include four new apartment complexes, two new hotel buildings, and a new office building. In total, the proposed redevelopment will result in an additional 1,246 equivalent dwelling units (see **Table 1**). The Project will be served by Eastern Municipal Water District (EMWD or District). The Project is located in Moreno Valley, CA, south of State Route 60 between the Day Street and Frederick Street, and is bounded by Town Circle. **Figure 1** depicts the project location and surrounding vicinity.

Figure 1 – Project Vicinity

Existing							
Building	Acreage	Use	Dwelling Units	EDU/ACRE	EDU		
Mall	80.1	Commercial Retail		5	401		
		Propo	osed				
Building	Acreage	Use	Dwelling Units	EDU/DU	EDU		
Hotel A	-	Hospitality	150	0.65	98		
Hotel B	-	Hospitality	120	0.65	78		
Res. A	-	Residential	596	0.65	387		
Res. B	-	Residential	216	0.65	140		
Res. C	-	Residential	565	0.65	367		
Res. D	-	Residential	250	0.65	163		
Office	2.66	Commercial Office	-	5	13		
Summary							
Total Dwe	lling Units				1647		
Density (G	iross) ¹ (DU/A	cre)			20.6		
Land Use							
	Existing				Retail		
	Proposed		Retail /	Residential /	Office		
APNs		291-110-032					
		291-110-033					
		291-110-034					
		291-110-035					
		291-110-036					
		291-110-037					

Table 1 – Moreno Valley Mall Redevelopment Project Summary

¹Based on 1647 Dwelling Units and 80.1 acres developable area.

2. ANALYSIS CRITERIA

This sewer study has been prepared in accordance with EMWD planning criteria, utilizing Project information provided by the Applicant and land use information published by City of Moreno Valley. The following reference documents and tools were utilized in the preparation of this sewer study:

- EMWD 2015 Wastewater Collection System Master Plan: Planning and Sizing Criteria
- EMWD Sanitary Sewer System Planning and Design (revised September 1, 2006)
- EMWD Sewer Record Drawings

• Bentley Systems FlowMaster 10.02.00.01 (released December 19, 2018)

Flow Estimation

The EMWD service area receives little rainfall, therefore wastewater collection system capacities within the District are based on peak dry weather flows. An allowance for wet weather flows is provided by adopting maximum depths of flow in the pipe sizing criteria. Wastewater flows are based on land use development type, development density, and flow rate by land use.

Land use development types are assigned an equivalent dwelling unit (EDU) conversion factor. Residential development EDUs are determined based on dwelling units (DU), and other developments are based on acreage. Hotel EDUs are determined based on number of rooms, using the same conversion factor as Very High Density Residential developments. These factors are provided by EMWD and are shown in **Table 2**. Average dry weather flows (ADWF) are then obtained by applying a standard value of 235 gpd per EDU. Peak dry weather flows (PDWF) are calculated by multiplying ADWF with a peaking factor (PF), which has a maximum value of 2.87.

For average dry weather flows greater than 0.1 MGD, the peaking factor is given by the following equation:

$$PF = 2.13 \times Q_{ADWF}^{-0.13}$$

Where Q_{ADWF} is in MGD.

Development Density ¹		
Commercial Retail	5	EDU/AC
Residential Very High Density (17 DU/AC)	0.65	EDU/DU
Commercial Office	5	EDU/AC
ADWF Factor	235	gpd/EDU
Maximum Peaking		
Factor		2.87
Minimum Peaking		
Factor		2.41

Table 2 – Wastewater Flow Estimation Criteria

¹See EMWD 2015, Table 1. Hotel EDU/DU ratio is assumed equal to Very High Density Residential

Pipe Capacity

Wet weather flows are accommodated by ensuring the peak dry weather flows do not exceed maximum depths of flow established by EWMD. As shown in **Table 3**, the maximum depths of flow (d/D) are 0.5 for pipes less than 15 inches in diameter and 0.7 for pipes equal or greater than 15 inches.

Flow depths are determined using Manning's formula:

$$Q = \frac{1.486}{n} A R^{2/3} S^{1/2}$$

Where *Q* is the peak dry weather flow (cfs), *n* is Manning's number, *A* is the pipe cross sectional area in (ft²), *R* is the hydraulic radius (feet), and *S* is the pipe slope (ft/ft).

Pipe slopes are set to ensure minimum scour velocity and to prevent wear due to excessive flow velocity, with a recommended velocity if 3 ft/s. To achieve this, minimum pipe slopes are established according to pipe diameter. These criteria are presented in **Table 3**.

Manning's n	0.015
Flow Velocity	
Minimum	2 ft/s
Maximum	10 ft/s
Recommended	3 ft/s
Minimum Pipe Slope	
8-inch pipe	0.40%
10-inch pipe	0.32%
12-inch pipe	0.24%
15-inch pipe	0.16%
PDWF Flow Depth (d/D)	
Diameter < 15 inches	< 0.5
Diameter ≥ 15 inches	< 0.7

Table 3 – Pipe Capacity Design Criteria

An 8-inch diameter pipeline has been established by EMWD as the minimum sewer pipe size in order to prevent maintenance problems and allow for sufficient space to convey sewage and debris downstream.

3. SEWER ANALYSIS

Existing Sewer Facilities

The existing mall facility has five existing points of connection (POC) to the EMWD sewer system. Per EMWD record drawings (see **Appendix D**), each POC varies in the number and size (either 6- or 8- inches) of connections. Using Manning's equation, one can deduce that a 6-inch pipe flowing at EMWD's design capacity of $d_n/D = 0.5$ has 46% of the flow capacity of an 8-inch pipe flowing at EMWD's design capacity, assuming consistent roughness coefficients and slopes.

As shown in **Table** 4, the existing mall generates 65.359 GPM of sewage in the ADWF condition. In total, there are six 8-inch laterals out of the building and ten 6-inch laterals out of the building. Assuming all laterals were designed to capacity, sewage flows allocated to each lateral are defined as follows:

 $E = 8 - inch \, lateral$ $S = 6 - inch \, lateral$ S = 0.46E $6E + 10S = 65.359 \, GPM$ $6E + 10(0.46E) = 65.359 \, GPM$ $=> 10.6E = 65.359 \, GPM$ $=> E = 6.166 \, GPM \, (each 8-inch \, pipe \, carries \, 6.166 \, GPM \, sewage \, in \, the \, ADWF \, condition)$

S = 0.46(6.166 GPM)=> S = 2.836 GPM (each 6-inch pipe carries 2.836 GPM sewage in the ADWF condition)

Sewage generated from the existing mall will be remain the same in the proposed condition. See **Table 5** for the sewage flow allocation to each building point of connection, and **Appendix A** for the location of each point of connection.

Proposed Sewer Facilities

The Project area includes a network of both public and private sewer lines, ranging from 8-inch to 15-inch lines. The Project will also incorporate a private sewer lift station and 750 FT of force main (see Pipe 9). Sewer lines generally run from northeast to southwest, sloping between 0.0032ft/ft and 0.073ft/ft.

A portion of the existing sewer system along the eastern side of the Project will be relocated within Town Circle to avoid the proposed developments. The existing sewer line within Town Circle will be upsized to accommodate the proposed flows.

At the point of connection to the existing public sewer line, the proposed sewer system will have approximately 35FT of cover. At the most up-stream location, the sewer line will have approximately 8 FT of cover.

The Project intends to connect to the existing public sewer main within Memorial Way and Town Circle. EMWD will determine the capacity of the existing sewer line within Memorial Way. See Appendix A for the Existing and Proposed Sewer Exhibit.

Sewer Service Capacity Check

Onsite pipes will be 8 to 12-inch diameter gravity sewer lines. Flows will enter the existing sewer system at a single point of connection as shown on **Appendix A**.

An analysis showing the assumed sewer generation rates, including estimated peak flows from the Project is presented in **Table 4**.

EXISTING								
Building	Residential Density	Acres	DU	EDU/AC ¹		EDU	ADWF ² (gpm)	
Mall	Very High	80.1	-	[5	400.5	65.359	
			PROPOS	SED				
Building	Residential Density	Acres	DU	EDU/DU	EDU/AC ¹	EDU	ADWF ² (gpm)	
Hotel A	Very High	-	150	0.65	-	97.5	15.911	
Hotel B	Very High	-	120	0.65	-	78.0	12.729	
Res. A	Very High	-	596	0.65	-	387.4	63.222	
Res. B	Very High	-	216	0.65	-	140.4	22.913	
Res. C	Very High	-	565	0.65	-	367.3	59.933	
Res. D	Very High	-	250	0.65	-	162.5	26.519	
Office		2.66	-	-	5	13.3	2.1705	
SUMMARY								
Total (Exis	sting plus Propo	sed):				1646.9	268.76	

Table 4 – Proposed Wastewater Flows

 $^1 \mbox{See}$ Table 2. For Very High residential density developments, a value of $~0.65 \mbox{EDU/DU}$ is assumed

²Using a standard factor of 235 gpd/EDU

The results of sewer hydraulic calculations are presented in **Table 5**. Bentley FlowMaster was used calculate velocity and flow depth, employing the Manning friction method as discussed in Section 2. Complete FlowMaster program output is provided in Appendix F.

Pipe Section	No	de								Flow D	epth
				ADWF	Peaking	Peak Flow	Diameter	Slope	Velocity		
No.	Start	End	Tributary Flows	(MGD)	Factor	(gpm)	(in)	(ft/ft)	(ft/s)	d (in)	d/D
1	А	В	1/2 Res D	0.019	2.87	38.1	8	0.004	1.3	1.9	0.24
2	В	С	1ET	0.009	2.87	17.7	8	0.005	1.13	1.3	0.16
3	С	D	1/2 Res D + 1ET	0.028	2.87	55.8	8	0.005	1.58	2.2	0.28
4	D	E	1ET	0.009	2.87	17.7	8	0.018	1.76	0.9	0.11
5	Е	F	1/2 Res D + 2ET	0.037	2.87	73.4	8	0.018	2.68	1.8	0.23
6	G	I	1/2 Res D	0.019	2.87	38.1	8	0.007	1.59	1.7	0.21
7	Н	I	3SX + 1ET	0.021	2.87	42.1	8	0.004	1.34	2	0.25
8	I	J	1/2 Res D + 3SX + 1ET	0.040	2.87	80.2	8	0.008	2.07	2.4	0.30
9	J	К	1/2 Res D + 3SX + 1ET	0.040	2.87	80.2	4	(+)0.004	min 2	4	1.00
10	L	Ν	Hotel A/B	0.041	2.87	82.2	8	0.004	1.62	2.9	0.36
11	М	N	Office	0.003	2.87	6.2	8	0.004	0.76	0.8	0.10
12	N	К	Hotel A/B + Office	0.044	2.87	88.4	8	0.004	1.65	3	0.38
13	к	х	1/2 Res D + 3SX + 1ET + Hotel A/B + Office	0.085	2.87	168.6	8	0.013	3.03	3.1	0.39
14	0	Q	1/2 Res C	0.043	2.87	86.0	8	0.007	2.01	2.5	0.31
15	Р	Q	1/2 Res C	0.043	2.87	86.0	8	0.007	2.01	2.5	0.31
16	Q	S	2/2 Res C	0.086	2.87	172.0	8	0.007	2.43	3.7	0.46
17	R	S	Res B	0.033	2.87	65.8	8	0.007	1.87	2.2	0.28
18	S	U	Res C + Res B	0.119	2.81	232.6	10	0.007	2.6	3.9	0.39
19	Т	U	Res A	0.091	2.87	181.4	8	0.007	2.46	3.8	0.48
20	U	w	Res A + Res B + Res C	0.210	2.61	381.0	12	0.007	2.95	2.95	0.25
21	V	W	2ET +4SX	0.034	2.87	68.0	8	0.005	1.67	2.5	0.31
22	w	х	Res A + Res B + Res C + 2ET + 4SX	0.244	2.56	434.2	12	0.005	2.7	5.6	0.47
23	x	Z	Res A + Res B + Res C + 3ET + 7SX + 1/2 Res D + Hotel A/B + Office	0.329	2.46	562.3	12	0.026	4.91	3.6	0.30
24	Y	Z	1ET + 3SX	0.021	2.87	42.1	8	0.073	3.74	1	0.13
25	Z	F	Res A + Res B + Res C + 4ET + 10SX + 1/2 Res D + Hotel A/B + Office	0.350	2.44	593.6	15	0.004	2.68	6.3	0.42

* ET = 8-inch lateral from mall, SX = 6-inch lateral from mall. See section 3 for definition

4. CONCLUSION

Based on the calculations, an onsite 8-inch to 12-inch diameter sewer system will be designed for the project. Flows will be conveyed to the existing and proposed public 8-inch to 15-inch sewer system within Town Circle before connecting to the existing public sewer system at the intersection of Memorial Way and Town Circle. EMWD will determine the capacity of the existing sewer line within Memorial Way.

Tammie Moreno, P.E.

C 74417 Exp. 9/30/23

5. REFERENCES

- EMWD 2015, Wastewater Collection System Master Plan, Master Plan Supplement, Planning and Sizing Criteria (accessed July 6, 2020). <u>https://www.emwd.org/sites/main/files/fileattachments/sewer master plan supplement 2015 wwfmp planning and sizing criteria appendix <u>3a.pdf</u>
 </u>
- 2. EMWD 2006, Sanitary Sewer System Planning and Design (revised September 1, 2006). https://www.emwd.org/sites/main/files/file-attachments/emwdsewer_system_design.pdf.

APPENDIX A

Existing and Proposed Sewer Exhibit

EXISTING AND PROPOSED SEWER AND WATER EXHIBIT MORENO VALLEY MALL MORENO VALLEY, CALIFORNIA

k:\snd_ldev\195381002 - moval mall\engineering\sewer\exhibit\2022.03.02 - emwd - sanitary sewer - proposed site.dwg 3/24/2022

APPENDIX B

EMWD Wastewater Collection Sewer Master Plan Planning and Sizing Criteria

Master Plan Supplement Planning and Sizing Criteria

FINAL

2015 WASTEWATER COLLECTION SYSTEM MASTER PLAN

B&V Project No. 187976

APPENDIX 3A – PLANNING CRITERIA

3A.1 PLANNING CRITERIA

The purpose of a master plan is to plan for future development and assess the impact of the development to existing infrastructure performance. As part of the master plan process, areas of future growth are projected, additional infrastructure needs to serve future growth areas are identified, and recommendations are made for improvements to existing infrastructure impacted by growth. Recommendations are made using planning criteria specific to the service provider.

The following technical memorandum outlines the planning criteria used for the Eastern Municipal Water District's (District) Wastewater Collection System Master Plan Update (2015 Master Plan). The District serves five collection systems: Moreno Valley, Temecula Valley, Perris Valley, Sun City, and San Jacinto. The Sun City operational boundary is generally combined with the Perris Valley operational boundary since they are both served by the Perris Valley Regional Water Reclamation Facility (RWRF). These criteria have been developed to allow the District to evaluate their existing facilities and plan for the future, while maintaining a reliable and safe wastewater collection system:

- Wastewater Flows
 - o Land use density
 - Flow per equivalent dwelling unit (EDU)
 - Peaking factors and diurnal patterns
 - Pipe Capacity and Sizing
 - Allowable depth
 - o Slope
 - o Velocity
 - Roughness factors
- Hydraulic Modeling Approach
- Lift Station Capacity and Sizing

Note that this master planning effort does not negate the need for developers to prepare a site-specific wastewater planning studies to demonstrate that new development or redevelopment does not have negative impacts on the existing wastewater system or to identify required improvements.

3A.2 WASTEWATER FLOWS

Wastewater flows in a collection system vary significantly depending on the time of day and climatic conditions. During dry weather conditions wastewater flows are produced based on wastewater generated from various land uses, while during wet weather conditions, wastewater flows may be significantly impacted by rainfall entering the wastewater collection system. Figure 1 shows typical wastewater flow components.

Time of Day

Figure 1: Typical Wastewater Flow Components

As shown, wastewater components include:

- Base sewage flow is the portion of the flow that is the return flow from customer water use.
- Average dry weather flow (ADWF) comprises of base sewage flow and dry weather infiltration. ADWF is the expected wastewater flow on a day with no precipitation events. ADWF can vary seasonally as groundwater levels change (causing fluctuations in dry weather infiltration).
- Diurnal Pattern is the change in ADWF over the course of the day and is attributable to variations in domestic, industrial, and commercial base wastewater generation.
- Infiltration is groundwater that seeps into a collection system through defective pipes, pipe joints, and manhole structures below the manhole corbel and chimney. The rate of infiltration depends on the depth of groundwater above the defects, the size of the defects, and the percentage of the collection system that is submerged. Variation in groundwater levels and the associated infiltration is both seasonal and weather dependent.
- Wet weather flows are comprised of wet weather infiltration and inflow. Wet weather infiltration is the additional infiltration that occurs due to rainfall induced higher groundwater conditions and is typically seen in the hours or days following significant rain events. Inflow is rainfall related

water that enters a collection system from sources such as private laterals, downspouts, manhole defects, foundation piping, and cross-connections with storm sewers.

The District service area receives little rainfall, making it difficult to collect meaningful rainfall data to correlate rainfall to the wet weather response in the collection system. In response to lack of rainfall data and historically low observed rates of wet weather infiltration and inflow, the District has elected to evaluate their wastewater collection system capacity based on peak dry weather flows. An allowance for wet weather flows is provided by adopting a conservative allowable depth of flow in the pipe sizing criteria, as described in Section 4.1.3.

3A2.1 EXISTING AND PROJECTED FLOWS

The District's service area includes both existing and future development. Wastewater flows are based on land use development type, development density, and flow rate by land use (gallons per day [gpd] per acre). Wastewater flows for existing and future development are calculated separately, as described in the following sections.

3A2.1.1 Existing Development

Prior to the Master Plan update, the District performed flow monitoring and sewer model calibration studies for each wastewater service area. The data obtained during the flow monitoring studies was used to calibrate the model, calculate typical unit flow factors, and develop diurnal patterns for various types of development within the service areas.

The District provided GIS land use layers for the existing development areas served by the District. The existing development flows are based on the model-calibrated unit flow factors for each land use type. Actual flows from the calibrated model were used to evaluate and analyze existing collection system capacity.

3A2.1.2 Future Development

The District maintains a Database of Proposed Projects (DOPP). The DOPP tracks information from the planning departments of cities, Riverside County, and District staff regarding proposed developments. The DOPP provides information about the type of development, size, and the anticipated number of EDUs.

In addition to the information from the known developments tracked in the DOPP, General Plan Land Use data was obtained from the cities and Riverside County to project future development to build out conditions. Development in these areas is based on less specific information than the DOPP; generally land use category and acreage.

In addition to the DOPP and general land use planning, the District also maintains detailed information about special development areas (Special Projects). These areas include unusual types of development, or redevelopment of existing areas. The anticipated development from the Special Projects is included in the future development and is described in more detail in Chapter 3.

Future development for each land use and DOPP was assigned a number of EDUs per acre for each land use category. Table 1 summarizes the assumed development densities for various land uses.

Table 1: Development Densities

LAND USE CATEGORY	UNITS	AVERAGE RESIDENTIAL DENSITY (DU/ACRE)	RESIDENTIAL (EDU/DU)	DEVELOPMENT DENSITY (EDU/ACRE)
Residential Land Use				
Estate Density	DU	0.5	1.5	0.8
High Density	DU	12	0.7	8.4
Low Density	DU	2	1.3	2.6
Medium Density	DU	4.5	1	4.5
Medium High Density	DU	6	0.9	5.4
Mobile Home Park	DU	10	0.65	6.5
Rural Mountainous ⁽¹⁾	DU	0.1	3	0.3
Rural ⁽¹⁾	DU	0.2	3	0.6
Very High Density	DU	17	0.65	11.1
Very Low Density ⁽¹⁾	DU	1	1	1.5
Non-Residential Use				
Agriculture ⁽¹⁾	acre			0
Business Park/Light Industrial	acre			5
Business Park/Light Industrial/Warehouse	acre			1.25
Commercial Office	acre			5
Commercial Retail	acre			5
Heavy Industrial	acre			7.5
Hospital	acre			5
Mixed Use Policy Area	acre			5
Open Space (Conservation, Landscape, Recreation, Rural, or Water) ⁽¹⁾	acre			5
Public Facilities (Municipal or School)	acre			5

⁽¹⁾ The following uses were assumed to be served by septic systems and do not contribute flow to the wastewater collection system: Rural Mountainous, Rural, Very Low Density, and Agriculture, and Open Space.

3A2.1.3 Flow Per Equivalent Dwelling Unit

For all types of development, the land use categories were converted to EDUs based on Table 1. Wastewater flow (ADWF) was calculated by multiplying the number of EDUs per land parcel by a rate of 235 gpd/EDU; the District's criteria used for regional planning.

3A2.2 PEAKING FACTORS AND DIURNAL PATTERNS

Peaking factors and diurnal curves are applied to the existing and projected wastewater flows and are used to evaluate the collection system capacity and to appropriately size recommended improvements.

3A2.1.4 Peaking Factor Curve

A peaking factor curve was developed based on the results from the calibration studies to project peak dry weather flow for a given average dry weather flow. The peaking curve is used for sizing pipe replacements or extensions.

The curve is shown in Figure 2 and is described by the equation $PF = 2.13 Q_{ADWF}^{-0.13}$, where Q_{ADWF} is the average dry weather flow and PF is the peaking factor. The peak flow is estimated by multiplying Q_{ADWF} times PF. The maximum peaking factor was identified as 2.87, so all flows less than or equal to 0.1 mgd are assumed to have a peaking factor of 2.87.

Figure 2: Peaking Factor Curve

3A2.1.5 Diurnal Patterns

The diurnal patterns developed during the calibration studies will be used to evaluate and analyze existing collection systems. For modeling future development, two diurnal patterns were developed; one for use with residential land use and the other for non-residential land use. Each pattern represents a 7-day period beginning at 1:00 a.m. on Saturday and continuing to midnight on Friday. The patterns were developed using the following rules:

- Each day, a peaking factor of 2.87 is achieved for two hours
- The flows are normalized over a 24-hour period (average PF of 1)
- Diurnal patterns can only be applied to loads $\leq 0.1 \text{ mgd}$ (~425 EDUs)
- Patterns were based on typical residential or office/retail curves to establish the timing of the peak and minimum flows

Figure 3 shows the standard residential and non-residential diurnal patterns to be used in the model for future flows.

Figure 3: Residential and Non-Residential Patterns

Additional diurnal patterns were created for two of the Special Projects in Temecula Valley, Old Town and Wine Country, to account for the impacts of special events that take place within these areas. These areas in Temecula Valley have been observed to have higher peaking factors at different times in comparison to other areas due to the additional flow generated during special events, such as festivals. These patterns follow the same rules as the standard curves with the exception of having a peaking factor of 3.00 instead of 2.87. Figure 4 shows the patterns for old town and wine country.

Figure 4: Old Town and Wine Country Patterns

3A.3 HYDRAULIC MODELING APPROACH

The District's existing calibrated wastewater models for each basin use an extended period simulation to analyze their existing collection systems under average dry weather flow and peak dry weather flow. To analyze the collection systems for future growth, various approaches were discussed with the District. Black & Veatch prepared a pilot model using the Moreno Valley hydraulic model to test three different approaches for peaking future flows. The three approaches and general results are summarized below.

- **Approach 1:** Perform steady state runs using a peaking factor equation. This approach may overestimate expected flows, but provides a level of protection/conservatism.
- **Approach 2:** Existing flows are peaked using the calibrated diurnal patterns and future flows are applied to the model using a constant peaking factor of 2.87 (extended period simulation). This approach generally overestimates results as compared to the PF equation.
- Approach 3: Existing flows are peaked using the calibrated diurnal patterns (extended period simulation). Representative diurnal patterns identified in Section 2.2.2 reflect the typical shape of the calibration patterns but are adjusted to meet the 2.87 peaking factor. This approach generally underestimates results as compared to the PF equation, but may provide results that better align with existing or expected system flows.

It was decided that the system would be evaluated using Approach 3 to identify CIP projects and Approach 1 will be used to size the new facilities. Approach 3 will generate the most likely/expected flows caused by future development. Model results will be assessed against the District's planning criteria and CIP projects will be identified where the criteria are not met. Where deficiencies are identified using Approach 3, the peaking factor equation (Approach 1) will be used to estimate the projected wastewater flow for the new facility. It has been established that new facilities will be sized for build out conditions, so it is expected that Approach 1 would only be performed under the build-out modeling scenario.

3A.4 CAPACITY AND SIZING CRITERIA

The capacity and sizing criteria are used both to evaluate existing capacity due to future growth and to size new facilities to serve future developments. In some cases the existing facilities are allowed to exceed the criteria especially if additional growth in the area is not expected and no problems with operations have been reported.

3A4.1 GRAVITY PIPES

The capacity of a gravity pipe is a function of its slope, diameter, and roughness. Manning's formula for open-channel flows is used to calculate flow capacity in gravity mains:

 $Q = (1.486/n) AR^{2/3} S^{1/2}$

Where:

Q = flows, cfs

n = Manning's coefficient of roughness

A = cross sectional area of pipe, cu ft

R = hydraulic radius (flow area divided by wetted perimeter), ft

S = slope of the pipe, ft/ft

The District assumes a Manning's coefficient of 0.013 for all wastewater pipe material and uses a minimum pipe size of 8 inches for new collection system pipe. While the District utilizes n=0.013 for Capital Improvement Projects, all private development projects shall use n=0.015 to account for long term pipe conditions. **3A4.1.1 Velocity Criteria**

Velocity is an important criterion for proper operation of a wastewater collection system. The District requires that pipe velocities be designed for 2 fps to 10 fps.

The minimum allowable velocity is 2 fps at calculated peak dry weather flow to avoid excessive deposition of solids in the collection system. In pipes where the minimum criterion will not be achieved on a regular basis, or will not be achieved for many years, the District will need to make arrangements to clean the pipes on a regular basis.

Velocities in excess of 10 fps could result in excessive wear on the pipe due to the abrasive nature of grit in the wastewater flow. Typically, drop manholes can be used to avoid peak velocities in excess of 10 fps, but may cause odor problems.

3A4.1.2 Slope

A minimum slope is set for each pipe size to help ensure acceptable velocity and avoid solids deposition in the collection system. Table 2 summarizes the minimum slope for various pipe sizes used for the Master Plan.

PIPE SIZE (INCHES)	MINIMUM SLOPE (FT/FT)	PIPE SIZE (INCHES)	MINIMUM SLOPE (FT/FT)
8	0.0040	21	0.0012
10	0.0032	24	0.0010
12	0.0024	27	0.0010
15	0.0016	30	0.0010
18	0.0014	36	0.0010

Table 2: Minimum Pipe Slopes

3A4.1.3 Depth to Diameter (d/D) Criteria

Depth to Diameter (d/D) is the ratio of the depth of wastewater to the diameter of the pipe. The table below shows the design criteria for gravity mains. All new sewer mains less than 15 inches in diameter shall be sized to carry the projected PDWF at a depth not greater than half of the diameter of the pipe (d/D not to exceed 0.5). New sewer mains 15 inches and larger shall be sized to carry the projected PDWF at a depth of flow not greater than 70 percent of the diameter of the pipe (d/D not to exceed 0.7). Table 3 provides a summary of pipe design criteria for capacity evaluation.

INFRASTRUCTURE	PEAK ADWF D/D	MANNING'S N	MINIMUM VELOCITY (FPS)	MAXIMUM VELOCITY (FPS)
Diameter < 15 inches	< 0.5	0.013	2	10
Diameter ≥ 15 inches	< 0.7	0.013	2	10

Table 3: Gravity Pipe Capacity Design Criteria

Note: The minimum pipe size for new collection system pipe is 8 inches.

3A4.2 LIFT STATIONS AND FORCE MAINS

Based on historical flow data, the District has determined that a 20% allowance for wet weather flows is adequate for lift station capacity planning. The District's lift stations and force mains are evaluated based on the ability to service the Peak LS Flow (Peak ADWF x 1.2).

3A4.1.4 Lift Stations

Lift station capacity is evaluated in terms of total capacity and firm capacity. The total capacity is the maximum capacity of the lift station with all pumps operating. The firm capacity is defined as the capacity of the lift station with the largest pump out of service. Lift stations will be evaluated to determine both total and firm capacity of the station.

The capacity of a lift station is dependent upon the pumping capacity and the system head that is experienced in the downstream force main. The system head is determined by the static pumping requirements as well as the head loss experienced through the force main under the varying flow conditions. The system head is determined using the force main diameter, length, assumed C-factor, and static pump requirements (wet well and discharge elevation).

For each station, the pump curves will be plotted against the system head curve that is expected to occur under the peak lift station flow for all planning years. Figure 5 shows an example lift station capacity assessment graph for the Day Street Lift Station.

Figure 5: Day Street Lift Station Capacity Assessment

The capacity assessment graph for each lift station will determine the existing lift station capacity as well as future flow and head pumping requirements. All lift stations will be sized to provide adequate firm capacity to pump Peak LS Flow at build-out conditions

3A4.1.5 Force Mains

The capacity of a force main pipe is a function of the velocity in the pipe. The Hazen-Williams equation is used to calculate flows in force mains:

```
V = 1.318 CR^{0.63}S^{0.54}
```

Where:

```
V = Velocity, fps
```

C = Hazen-Williams coefficient of roughness

- R = hydraulic radius (flow area divided by wetted perimeter), ft
- S = Slope of energy grade line, ft/ft

The District assumes a Hazen-Williams coefficient value of 100 for all force mains. Velocity is the major criterion when sizing force mains. In general, force mains should be sized to convey Peak LS Flows at build out conditions with a velocity between 2 fps and 6 fps. Velocities less than 2 fps will result in wastewater spending additional time in the force main, which can cause downstream operational problems. Force mains with a velocity greater than 6 fps tend to have excessive head loss and can affect the ability of the lift station to operate properly.

APPENDIX 3B – COORDINATION WITH WATER MASTER PLAN

3B.1 COORDINATION WITH WATER MASTER PLAN

The 2015 Update is being developed concurrently with the District's Water System Master Plan which is being updated by a separate consultant. The District is interested in maintaining consistency and comparable appearance between its wastewater and potable water hydraulic models. In an effort to maintain consistency, the District provided the following information for the both sewer and potable water models:

- Additional user information fields for the nodes and pipeline tables in the models.
- Model scenarios for all planning years: 2014, 2016, 2018, 2020, 2022, 2025, 2030, 2035, 2045, 2065, 2099 (build-out).
- Pre-set database queries.

3B.1.1 Additional Hydraulic Model Fields

The District added additional fields to the "Element Information" tables in the wastewater hydraulic model for manholes and pipelines. No existing information fields were removed from the table and no existing information was cleared. Table 3B-1 shows the additional fields: 23 additional fields for the manhole table and 8 additional fields for the pipeline table.

3B.1.2 Hydraulic Model Scenarios

All four hydraulic models provided by the District included separate hydraulic model scenarios for each planning year: 2014 (Existing), 2016, 2018, 2020, 2022, 2025, 2030, 2035, 2045, 2065, and Build-out. Each year contains two scenarios: capacity analysis and capital improvement program (CIP) analysis. The capacity analysis uses existing 2014 facilities for all scenarios; however, the flows vary in each scenario, corresponding to respective years. The CIP analysis uses CIP facilities and flows corresponding to each respective year. All scenarios in the model utilize the same pipe data set; however node data changes for each planning year.

3B.1.3 Hydraulic Model Queries

The District created database queries in the wastewater model similar to the queries created in the water model. These queries include database queries for MHs, Pipes (PI), Pumps (PU), and Wet Wells (WW) based on facility installation year. Existing and new facilities are retired

or become active based on the [Installation Year] and [Retirement Year] field. Queries are used to select the appropriate facilities for each scenario. The field called YR_INST is populated with year of installation and the queries can be used to identify facilities needed based on each planning year. The years for these queries correspond to the District's plan for existing and future capital improvements. The same years are used for facility selection as seen in model scenarios: 2014 (Existing), 2016, 2018, 2020, 2022, 2025, 2030, 2035, 2045, 2065, and build-out. The queries have the following naming convention with YA referring to the active year of installation:

[YA_20XX_MH/PI/PU/WW]. For example for year 2020 pipe query, the naming for that query is YA_2020_PI.

3B.1.4 Future Wastewater Flows

As discussed in Chapter 3, future ADWF is allocated in the model along with corresponding diurnal patterns to simulate flow fluctuations, including the PDWF, within the collection system. The District estimates future wastewater flows using future land use categories and the DOPP. The District owns and maintains the DOPP to track planned development. For the 2015 Update, future development data was extracted from this database into point, line and polygon shapefiles in GIS. The polygons represent the physical area of the proposed / future developments / projects. The point layer places a point at the center of the polygon (called a DOPP point), and the line layer displays a pipe (called a DOPP pipe) from the DOPP point to an existing manhole, which represents the entrance of the flow into the wastewater collection system. The District determines the entrance point (either an existing or future MH) by performing a locating routine using GeoWizard to automatically attribute a downstream manhole to the DOPP pipe based on proximity.

A second step was performed by the District to verify downstream manhole locations for each DOPP node and pipe. This included the following process to verify the location of the downstream manholes and update the DOPP pipe and node databases.

A field called (LOC_VERF) was added to the DOPP pipeline database to document verification progress and populated with the following information:

- "Yes" Downstream location is verified.
- "Yes, updated" Downstream location was updated to a more appropriate MH. The length field was recalculated and [Facility] field was updated with correct manhole number (MHXXX).
- "No, large DOPP" DOPP basin covers a large area over multiple MHs; the DOPP will need to be evaluated and flows split to appropriate MHs as part of the 2015 Update.
- "No, split DOPP" DOPP basin polygon is not contiguous; the DOPP will need to be evaluated and flows split to appropriate MHs as part of the 2015 Update.
- "No, MP to review" Downstream location unclear; the DOPP will need to be evaluated and flow allocated to appropriate MHs as part of the 2015 Update.

- 1. Verified downstream connection using contour layer, existing pipe network and DOPP polygon.
 - Contour layer Checked direction of grade to verify correct downhill manhole
 - Existing pipe network Checked existing pipeline to confirm the DOPP pipe is not crossing a property
 - DOPP polygon Checked if polygon is near the stub-out of another development, if so, track back to that line
- 2. Added fields to DOPP
 - DOPP MH attribute table (for both commercial and single family residential (SFR)):
 - [INSTALL_YR], [RETIRE_YR], [MHRIM_FT], [MHINV_FT],
 [DOPP_Node], [MH_DIA_FT], [DOPP_ID]
 - DOPP pipe attribute table (for both commercial and SFR):
 - [INSTALL_YR], [RETIRE_YR], [DOPP_ID], [DOPP_Pipe],
 [DIA_IN], [MANN_N], [LENGTH_FT], [UpMH], [DnMH],
 [DnMH_GIS], [Pipe_ID], [UPINV_FT], [DNINV_FT]

As a final step, flows into the appropriate MHs were verified and the DOPP files were populated with information fields for use in importing DOPP nodes and pipes into the wastewater model.

APPENDIX C

EMWD Sewer Design Standards

4/19/93

SANITARY SEWER SYSTEM BASIS OF DESIGN

Eastern Municipal Water District Engineering Manual

SEWERAGE	GENERAL	(per I.D. Memo #10536 by WEP) NATED 2/9/93
		(BY BILL PLUMMER)

DESIGN FLOWS

In 1989, a survey of the District's sewer system was performed to determine flow generation rates from various land uses. This information is contained in the Wastewater Facilities Master Plan prepared by Black & Veatch dated 1990. The results of the survey showed variation in sewage generation not only by type of use but also by location (e.g. Sun City housing had a lower sewage generation per unit than Moreno Valley). However, for design purposes it is important that criteria be developed and used on a consistent basis. To achieve this goal a meeting was held to agree on the criteria for sewer design. The result of the meeting is a compromise of actual measurements vs design criteria. Table 1 attached shows the relationship of land use to the wastewater flow agreed to. The information in Table 1 shall be used by the District for future sewer This information has been adjusted to correspond to future design. conditions that are expected to uniformly occur as development takes place in all areas of the District.

The Wastewater Facility Master Plan also developed peak flow rates and obtained data which correlate peak flow rates with average flow rates. By a plot of this data, a curve has been established which is used in determining the peaking factor to be used in the design of the sewer. The peaking curve that is to be used in District design is shown on Table 2.

The procedure to be followed in determining design flows is to first determine the tributary drainage area for the sewer pipeline, determine the various average flows within the drainage area, add these average flows, and then convert these average flows to a peak flow for the design of the sewer (i.e., $Q_{\text{Design}} = Q_{\text{AVE}}$ x Peaking Factor).

PIPE SIZE SELECTION

Sewers 12-inches in diameter and smaller are designed to flow at a maximum depth of one-half the diameter of the pipe. Sewers 15-inches in diameter and larger are designed to flow at a maximum of threequarter depth of the pipe diameter.

It is important to maintain an air gap in the top of sewer pipes to convey sewer gases downstream along with the sewage flow. Maintaining the maximum depth of flow to pipe diameter ratio (D/d) conditions described above helps to ensure that sufficient space occurs to meet these conditions.

3

Eastern Municipal Water District Engineering Manual

SEWERAGE GENERAL	
------------------	--

An 8-inch diameter pipeline has been established as the minimum sewer pipe size. This conclusion was established for two main reasons:

- 1. Maintenance problems can occur on smaller size pipes.
- 2. Sufficient space is necessary to convey sewage and debris down stream in the sewer pipe to avoid possible backflow up sewer laterals.

The only exceptions to the 8-inch minimum pipe size criteria are in the Communities of Romoland, Homeland and Green Acres, where 6-inch diameter sewer pipelines were installed due to grant conditions applied to the financing of sewers in these communities.

MANNING "n" VALUES

Pipe size is determined by using mannings equation which is shown below: Q= $(1.486/n) \ AR^{2/3} \ S^{1/2}$ Q= flows (cfs) n= mannings coefficient A= cross sectional area of pipe (feet²) R= hydrologic radius of the wetted cross-section of the pipe (feet)

S= slope of energy gradient

Refer to <u>Handbook of Hydraulics</u> by Brater and King or the Clay Pipe Engineering Manual for use of the equation.

PIPE SLOPES

The minimum slopes for sewer pipelines are based on obtaining a minimum velocity of 2 fps at design peak flow depth. This provides a means to resuspend solids deposited in the sewer during peak flows. Refer to Table 3 for minimum pipe slopes.

On small-size sewers, there is generally no particular concern with maximum slopes or velocities, except where water and ends of sewer may be insufficient in volume to move solids. On large-size sewers, it is necessary to design sewers which would have a peak velocity not exceeding 12 fps to avoid damage to plastic liners on RCP joints.

2 OF 9

Table 1EMWD - System Design and Loading Criteria

Average Daily Flow:

	EDU'	s / Acre ⁽¹⁾			
Residential	Typical	Range	Population / EDU	GPD / Capita	GPD / Acre ⁽²⁾
Low Density (LDR)	2.5	0 to 2.9	4	105	1,050
Medium Density (MDR)	4.5	3 to 11	3.5	100	1,575
High Density (HDR)	12	12 to 16	2.5	80	2,400
Very High Density (VHDR)	17	17+	2.2	80	2,992
Mobile Homes (MH)	6	varies	2	80	960
Age Restricted Comm. varies varie		varies	2	80	960
Non-Residential					
Commercial	1700	GPD / Acre			
Industrial	1700	GPD / Acre			
Institutional	1000	GPD / Acre			
Hospital	250	GPD / Bed			
Schools	20	GPD / Student			

Manning's Coefficient "n":

n = 0.013 (varies with depth for design) use n = 0.015 (for sizing pipes)

Peaking Factor:	See attached sheet (Table 2 - Peak Flow Rates)

Velocity:

2 ft/sec MINIMUM, 3 ft/sec recommended, & 10 ft/sec maximum

Notes:

⁽¹⁾ For calculation of actual flow, use actual Equivalent Dwelling Units (EDU) per Gross Acre ⁽²⁾ Applies to Typical EDU's / Acre only

Eastern	Municipal	Water	District
I	Ingineering	Manua	.1

SEWERAGE GENERAL

TABLE 3

PIPE MINIMUM PIPE SLOPES IN SEWER MAINS

Pipe <u>Diameter</u>	Preferred <u>Minimum</u>	Ordinary <u>Minimum</u>	Preferred Maximum slope <u>(not mandatory)</u>
8-inch	.0065	.0040	.12
10-inch	.0050	.0032	.085
12-inch	.0040	.0024	.066
15-inch	.0032	.0016	.050
18-inch	.0024	.0014	.037
21-inch	.0020	.0012	.030
24-inch	.0017	.0010	.025
27-inch	.0015	.0008	.022
30-inch	.0013	.00 07	.018

a) House Connection Laterals

Pipe diameter	4-inch		6-inch 8-inc		nch		
Minimum slope	0.020		0.020		0.020		
	(0.010	Extreme	Minimum	with	prior	approval	only)

6 OF 9

3 1.0-6

PF
APPENDIX D

EMWD Sewer Map & Record Drawings

Map Produced 2/1/2022 By EMWD Staff

any incorrect results, any lost profits and direct, special, indirect or consequential damages to any party, arising out of or in connection with the use or the inability to use the data hereon or the services.

_ ._ _ _ _ _ _ .

•

105

- - - /

.

••••••••

.

.

•

- **1**

Project Description		
Friction Method	Manning	
Solve For	Formula Normal Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.004 ft/ft	
Diameter	8.0 in	
Discharge	38.10 gpm	
Results		
Normal Depth	1.9 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.7 ft	
Hydraulic Radius	1.1 in	
Top Width	0.57 ft	
Critical Depth	1.6 in	
Percent Full	24.2 %	
Critical Slope	0.009 ft/ft	
Velocity	1.30 ft/s	
Velocity Head	0.03 ft	
Specific Energy	0.19 ft	
Froude Number	0.679	
Maximum Discharge	319.78 gpm	
Discharge Full	297.27 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Denth	0.0 in	
Length	0.0 III 0 0 0	
Number Of Steps	0.0 10	
	U	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.9 in	
Critical Depth	1.6 in	
Channel Slope	0.004 ft/ft	
Critical Slope	0.009 ft/ft	

Pipe 1

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.005 ft/ft	
Diameter	8.0 in	
Discharge	17.70 gpm	
Results		
Newvel Death	1.2 :	
	1.3 IN	
Flow Area	0.0 ft²	
vvettea Perimeter	υ.5 π	
	0.8 m	
i op wiatn	0.48 ft	
	1.1 IN	
Percent Full	15.7 %	
Critical Slope	0.009 ft/ft	
Velocity	1.13 ft/s	
Velocity Head	0.02 ft	
Specific Energy	0.12 ft	
Froude Number	0.739	
Maximum Discharge	357.52 gpm	
Discharge Full	332.36 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Linstream Denth	0.0 in	
Profile Description	N/A	
Profile Headloss		
Average End Denth Over Pice	0.00 10	
Normal Depth Over Rise	27 5 %	
Downstream Velocity	Infinity ft/c	
Linstream Velocity	Infinity ft/s	
Normal Depth	1 2 in	
Critical Depth	1.J III 1.1 in	
	1.1 III	
Critical Slope	0.005 IUIL	
critical slope	0.009 1011	

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.005 ft/ft	
Diameter	8.0 in	
Discharge	55.80 gpm	
Results		
Normal Depth	2.2 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.7 ft	
Hydraulic Radius	1.3 in	
Top Width	0.60 ft	
Critical Depth	1.9 in	
Percent Full	27.7 %	
Critical Slope	0.009 ft/ft	
Velocity	1.58 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.22 ft	
Froude Number	0.766	
Maximum Discharge	357.52 gpm	
Discharge Full	332.36 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Lenath	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.2 in	
Critical Depth	1.9 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.009 ft/ft	

Project Description		
Friction Method	Manning	
Colve For	Formula	
Solve Fol	Normai Deput	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.018 ft/ft	
Diameter	8.0 in	
Discharge	17.70 gpm	
Results		
Normal Depth	0.9 in	
Flow Area	0.0 π²	
Wetted Perimeter	0.5 π	
	0.6 IN	
Top width	0.43 π	
Critical Depth		
Critical Slope		
Volocity	1.76 ft/c	
Velocity Head	1.70 It/S	
Specific Epergy	0.03 ft	
Eroude Number	1 357	
Maximum Discharge	678 35 anm	
Discharge Full	630.61 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	11.5 %	
Downstream Velocity	Infinity ft/s	
, Upstream Velocity	Infinity ft/s	
Normal Depth	0.9 in	
Critical Depth	1.1 in	
Channel Slope	0.018 ft/ft	
Critical Slope	0.009 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 4 of 27

Project Description		
Friction Method	Manning	
Solvo For	Formula	
Solve Fol	Normai Depui	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.018 ft/ft	
Diameter	8.0 in	
Discharge	73.40 gpm	
Results		
	4.0.1	
	1.8 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.7 ft	
	1.1 in	
	0.56 π	
Critical Depth	2.2 in	
Percent Full	23.1 %	
	0.009 ft/ft	
Velocity	2.68 ft/s	
Velocity Head	0.11 ft	
Specific Energy	0.27 ft	
Froude Number	1.437	
Maximum Discharge	678.35 gpm	
Discharge Full	630.61 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Lenath	0.0 ft	
Number Of Steps	0	
· · ·		
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	23.1 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.8 in	
Critical Depth	2.2 in	
Channel Slope	0.018 ft/ft	
Critical Slope	0.009 ft/ft	

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.007 ft/ft	
Diameter	8.0 in	
Discharge	38.10 gpm	
Results		
Normal Depth	1.7 m	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.6 ft	
	1.0 m	
	0.54 ft	
Critical Depth	1.6 in	
Percent Full	21.0 %	
	0.009 ft/ft	
Velocity	1.59 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.18 ft	
Froude Number	0.894	
Maximum Discharge	423.03 gpm	
Discharge Full	393.26 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.7 in	
Critical Depth	1.6 in	
Channel Slope	0.007 ft/ft	
Critical Slope	0.009 ft/ft	

Pipe 6

2022.03.24.fm8 3/24/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 6 of 27

Project Description		
Friction Method	Manning	
Solvo For	Formula	
Solve For	Normai Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.004 ft/ft	
Diameter	8.0 in	
Discharge	42.10 gpm	
Poculto		
Normal Depth	2.0 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.7 ft	
Hydraulic Radius	1.2 in	
Top Width	0.58 ft	
Critical Depth	1.7 in	
Percent Full	25.4 %	
Critical Slope	0.009 ft/ft	
Velocity	1.34 ft/s	
Velocity Head	0.03 ft	
Specific Energy	0.20 ft	
Froude Number	0.682	
Maximum Discharge	319.78 gpm	
Discharge Full	297.27 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Lenath	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.0 in	
Critical Depth	1.7 in	
Channel Slope	0.004 ft/ft	
Critical Slope	0.009 ft/ft	

Project Description		
Friction Method	Manning	
Colve For	Formula	
Solve For	Normai Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.008 ft/ft	
Diameter	8.0 in	
Discharge	80.20 gpm	
Results		
Normal Depth	2.4 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.8 ft	
Hydraulic Radius	1.4 in	
Top Width	0.61 ft	
Critical Depth	2.3 in	
Percent Full	29.6 %	
Critical Slope	0.009 ft/ft	
Velocity	2.07 ft/s	
Velocity Head	0.07 ft	
Specific Energy	0.26 ft	
Froude Number	0.966	
Maximum Discharge	452.24 gpm	
Discharge Full	420.41 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
·		
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.4 in	
Critical Depth	2.3 in	
Channel Slope	0.008 ft/ft	
Critical Slope	0.009 ft/ft	

Pipe 8

2022.03.24.fm8 3/24/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 8 of 27

	Pipe 9		
Project Description			
Friction Method	Hazen- Williams Formula		
Solve For	Full Flow Capacity		
Input Data			
Roughness Coefficient	100.000		
Channel Slope	0.004 ft/ft		
Normal Depth	4.0 in		
Diameter	4.0 in		
Discharge	54.71 gpm		
Results			
Discharge	54.71 gpm		
Normal Depth	4.0 in		
Flow Area	0.1 ft ²		
Wetted Perimeter	1.0 ft		
Hydraulic Radius	1.0 in		
Top Width	0.00 ft		
Critical Depth	2.4 in		
Percent Full	100.0 %		
Critical Slope	0.009 ft/ft		
Velocity	1.40 ft/s		
Velocity Head	0.03 ft		
Specific Energy	0.36 ft		
Froude Number	(N/A)		
Maximum Discharge	58.53 gpm		
Discharge Full	54.71 gpm		
Slope Full	0.004 ft/ft		
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth	0.0 in		
Length	0.0 ft		
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.0 in		
Profile Description	N/A		
Profile Headloss	0.00 ft		
Average End Depth Over Rise	0.0 %		
Normal Depth Over Rise	37.5 %		
Downstream Velocity	Infinity ft/s		
Upstream Velocity	Infinity ft/s		
Normal Depth	4.0 in		
Critical Depth	2.4 in		
Channel Slope	0.004 ft/ft		
2022.03.24.fm8	Bentley Systems, Inc. Haestad Meth Center	ods Solution	FlowMaster [10.03.00.03]
3/24/2022	27 Siemon Company Drive Suite Watertown, CT 06795 USA +1-203	e 200 W 3-755-1666	Page 9 of 27

GVF Output Data

Critical Slope

0.009 ft/ft

2022.03.24.fm8 3/24/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 10 of 27

Project Description		
Friction Method	Manning	
Salva For	Formula	
Solve For	Normal Deput	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.004 ft/ft	
Diameter	8.0 in	
Discharge	82.20 gpm	
Results		
Normal Depth	2.9 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.9 ft	
Hydraulic Radius	1.6 in	
Top Width	0.64 ft	
Critical Depth	2.4 in	
Percent Full	36.0 %	
Critical Slope	0.009 ft/ft	
Velocity	1.62 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.28 ft	
Froude Number	0.680	
Maximum Discharge	319.78 gpm	
Discharge Full	297.27 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.9 in	
Critical Depth	2.4 in	
Channel Slope	0.004 ft/ft	
Critical Slope	0.009 ft/ft	

Project Description		
Friction Method	Manning	
Selve For	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.004 ft/ft	
Diameter	8.0 in	
Discharge	6.20 gpm	
Results		
Normal Depth	0.8 in	
Flow Area	0.0 ft ²	
Wetted Perimeter	0.4 ft	
Hydraulic Radius	0.5 in	
Top Width	0.40 ft	
Critical Depth	0.6 in	
Percent Full	10.0 %	
Critical Slope	0.011 ft/ft	
Velocity	0.76 ft/s	
Velocity Head	0.01 ft	
Specific Energy	0.08 ft	
Froude Number	0.629	
Maximum Discharge	319.78 gpm	
Discharge Full	297.27 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.8 in	
Critical Depth	0.6 in	
Channel Slope	0.004 ft/ft	
Critical Slope	0.011 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 12 of 27

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.015 Channel Stope 0.004 ft/ft Diameter 8.0 in Discharge 88.40 gpm Results Normal Depth 3.0 in Flow Area 0.1 ft2 Wetted Perimeter 0.9 ft Hydraulic Radius 1.6 in Top Weth 0.65 ft Critical Depth 2.4 in Percent Full 3.7.4 % Critical Stope 0.009 ft/ft Velocity Head 0.4 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.00 in Length 0.0 in Length 0.0 in Number Of Steps 0 OVF Output Data 0.0 in Upstream Depth 0.0 in Normal Depth Over Rise 0.0 % Normal Depth Over Rise 0.0 %			
Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.015 Roughness Coefficient 0.015 Channel Slope 0.004 ft/ft Diameter 8.0 in Discharge 88.40 gpm Results Imput Depth Results 1 ft² Normal Depth 3.0 in Flow Area 0.1 ft² Wetted Perimeter 0.9 ft Hydraulic Radius 1.6 in Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data Downstream Depth 0.0 in Length 0.0 ft Average End Depth Over Rise 0.0 % Normal Depth 0.0 % Normal Depth 0.0 % Normal Depth 0.0 % Normal Depth 0.0 % Normal Depth Over Rise 0.0 % Normal Depth Ove	Project Description		
Formula Formula Solve For Normal Depth Input Data Roughness Coefficient 0.015 Channel Slope 0.004 ft/ft Diameter 88.40 gpm Results Normal Depth 3.0 in Flow Area 0.1 ft² Wetted Perimeter 0.9 ft Hydraulic Radius 1.6 in Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 OVF Output Data Upstream Depth 0.0 in Profile Deacription <l< td=""><td>Friction Method</td><td>Manning</td><td></td></l<>	Friction Method	Manning	
Solve For Normal Depth Input Data Rughness Coefficient 0.015 Channel Slope 0.004 ft/ft Diameter 8.0 in Discharge 88.40 gpm Results Normal Depth 3.0 in Flow Area 0.1 ft² Wetted Perimeter 0.9 ft Hydraulic Radius 1.6 in Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data GVF Input Data Upstream Depth 0.0 in Upstream Depth 0.0 in Profile Description N/A Profile Description N/A		Formula	
Input Data Roughness Coefficient 0.015 Channel Slope 0.004 ft/ft Diameter 8.0 in Discharge 88.40 gpm Results	Solve For	Normal Depth	
Roughness Coefficient 0.015 Channel Slope 0.004 ft/ft Diameter 8.0 in Discharge 88.40 gpm Results Normal Depth 3.0 in Flow Area 0.1 ft ² Wetted Perimeter 0.9 ft Hydraulic Radius 1.6 in Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity 1.65 ft/s Velocity 1.65 ft/s Velocity 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data 0.0 in Length 0.0 it Number Of Steps 0 Ownstream Depth 0.0 in Profile Description N/A Profile Description N/A Normal Depth Over Ris	Input Data		
Kongniess Open (2000) 0.004 f/ft Diameter 8.0 in Discharge 88.40 gpm Results	Poughness Coefficient	0.015	
Online soluce 0.00 ft N/ft Diameter 8.0 in Discharge 8.40 gpm Results	Channel Slone	0.015 0.004 ft/ft	
Discharge 88.40 gpm Results	Diameter	8.0 in	
Disknage Other gim Results	Discharge	88 40 anm	
Results Normal Depth 3.0 in Flow Area 0.1 ft ² Wetted Perimeter 0.9 ft Hydraulic Radius 1.6 in Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical Downstream Depth 0.0 in Length 0.0 oft Number Of Steps 0 GVF Output Data Upstream Depth Upstream Depth 0.0 in Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Discharge	ool to gpin	
Normal Depth 3.0 in Flow Area 0.1 ft² Wetted Perimeter 0.9 ft Hydraulic Radius 1.6 in Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical CVF Input Data 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Normal Depth Over Rise 0.75 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.0 in	Results		
Flow Area 0.1 ft² Wetted Perimeter 0.9 ft Hydraulic Radius 1.6 in Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.00 ft Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.75 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth	Normal Depth	3.0 in	
Wetted Perimeter 0.9 ft Hydraulic Radius 1.6 in Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data 0.000 ft/ft Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 OUT GVF Output Data Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s </td <td>Flow Area</td> <td>0.1 ft²</td> <td></td>	Flow Area	0.1 ft ²	
Hydraulic Radius 1.6 in Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Downstream Velocity Infinity ft/s Downstream Velocity Infinity ft/s Upstream Velocity 1.0 in <td>Wetted Perimeter</td> <td>0.9 ft</td> <td></td>	Wetted Perimeter	0.9 ft	
Top Width 0.65 ft Critical Depth 2.4 in Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data GVF Output Data Output Data GVF Output Data Upstream Depth 0.0 in Profile Description N/A Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.0 in Critical Slope 0.004 ft/ft Critical Slope 0.009 ft/ft	Hydraulic Radius	1.6 in	
Critical Depth2.4 inPercent Full 37.4% Critical Slope 0.009 ft/ft Velocity1.65 ft/sVelocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow TypeSubcriticalGVF Input DataGVF Output DataGVF Output DataGVF Output DataOur subcritical DepthProfile DescriptionN/AProfile Headloss 0.00 ft Normal Depth Over Rise 0.0% Normal Depth 0.0 in Critical Depth 3.0 in Critical Depth 3.0 in Critical Depth 2.4 in Channel Slope 0.009 ft/ft	Top Width	0.65 ft	
Percent Full 37.4 % Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.0 in Critical Depth 2.4 in Channel Slope 0.009 ft/ft	Critical Depth	2.4 in	
Critical Slope 0.009 ft/ft Velocity 1.65 ft/s Velocity Head 0.04 ft Specific Energy 0.29 ft Froude Number 0.679 Maximum Discharge 319.78 gpm Discharge Full 297.27 gpm Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data 0.00 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Vugstream Velocity Infinity ft/s Downstream Velocity Infinity ft/s Normal Depth 3.0 in Critical Depth 2.4 in Channel Slope 0.004 ft/ft Critical Slope 0.009 ft/ft	Percent Full	37.4 %	
Velocity1.65 ft/sVelocity Head 0.04 ftSpecific Energy 0.29 ftFroude Number 0.679 Maximum Discharge 319.78 gpmDischarge Full 297.27 gpmSlope Full 0.000 ft/ftFlow TypeSubcriticalGVF Input DataGVF Output DataGVF Output DataOurstream Depth 0.0 inLength 0.0 inVerseam Depth 0.0 inProfile DescriptionN/AProfile DescriptionN/AProfile Headloss 0.0 %Normal Depth Over Rise 0.0 %Normal Depth 3.0 inCritical Depth 3.0 inCritical Depth 2.4 inChannel Slope 0.004 ft/ftCritical Slope 0.009 ft/ft	Critical Slope	0.009 ft/ft	
Velocity Head0.04 ftSpecific Energy0.29 ftFroude Number0.679Maximum Discharge319.78 gpmDischarge Full297.27 gpmSlope Full0.000 ft/ftFlow TypeSubcriticalGVF Input DataGVF Input DataGVF Output DataGVF Output DataUpstream Depth0.0 inLength0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.009 ft/ft	Velocity	1.65 ft/s	
Specific Energy0.29 ftFroude Number0.679Maximum Discharge319.78 gpmDischarge Full297.27 gpmSlope Full0.000 ft/ftFlow TypeSubcriticalGVF Input DataGVF Input DataGVF Output DataGVF Output DataGVF Output DataUpstream Depth0.0 inProfile DescriptionN/AProfile DescriptionN/AProfile Depth Over Rise0.00 ftAverage End Depth Over Rise0.00 ftAverage End Depth Over Rise0.00 ftAverage End Depth Over Rise0.00 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth3.0 in <td>Velocity Head</td> <td>0.04 ft</td> <td></td>	Velocity Head	0.04 ft	
Froude Number0.679Maximum Discharge319.78 gpmDischarge Full297.27 gpmSlope Full0.000 ft/ftFlow TypeSubcriticalGVF Input DataOwnstream Depth0.0 inLength0.0 ftNumber Of Steps0GVF Output DataOVFOUTPUT DataOVFOUTPUT DataOVFOUTPUT DataOVFOUTPUT DataOVFOUTPUT DataOUTPUT DataOUTPUT DataOUTPUT DataOUTPUT DataOUTPUT DataOUTPUT DataOUTPUT DataOUTPUT DataDescriptionN/AProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.00 %0.00 ftNormal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.004 ft/ftCritical Slope0.009 ft/ft	Specific Energy	0.29 ft	
Maximum Discharge319.78 gpmDischarge Full297.27 gpmSlope Full0.000 ft/ftFlow TypeSubcriticalGVF Input Data	Froude Number	0.679	
Discharge Full297.27 gpmSlope Full0.000 ft/ftFlow TypeSubcriticalGVF Input Data	Maximum Discharge	319.78 gpm	
Slope Full 0.000 ft/ft Flow Type Subcritical GVF Input Data 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.0 in Critical Depth 2.4 in Channel Slope 0.009 ft/ft	Discharge Full	297.27 gpm	
Flow Type Subcritical GVF Input Data 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Stream Velocity Infinity ft/s Operative Stream 3.0 in Critical Depth 2.4 in Channel Slope 0.009 ft/ft	Slope Full	0.000 ft/ft	
GVF Input Data Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data Upstream Depth Downstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.0 in Critical Depth 2.4 in Channel Slope 0.009 ft/ft	Flow Type	Subcritical	
Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Ormal Depth 3.0 in Critical Depth 2.4 in Channel Slope 0.009 ft/ft	GVF Input Data		
Length 0.0 ft Number Of Steps 0 GVF Output Data	Downstream Denth	0.0 in	
Number Of Steps 0 GVF Output Data 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Ownmal Depth 3.0 in Critical Depth 2.4 in Channel Slope 0.009 ft/ft	Longth	0.0 m	
GVF Output Data Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Oritical Depth 2.4 in Channel Slope 0.009 ft/ft	Number Of Steps	0.0 10	
GVF Output DataUpstream Depth0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.009 ft/ft		0	
Upstream Depth0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.009 ft/ft	GVF Output Data		
Profile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.009 ft/ft	Upstream Depth	0.0 in	
Profile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.004 ft/ftCritical Slope0.009 ft/ft	Profile Description	N/A	
Average End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.004 ft/ftCritical Slope0.009 ft/ft	Profile Headloss	0.00 ft	
Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.004 ft/ftCritical Slope0.009 ft/ft	Average End Depth Over Rise	0.0 %	
Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.004 ft/ftCritical Slope0.009 ft/ft	Normal Depth Over Rise	37.5 %	
Upstream VelocityInfinity ft/sNormal Depth3.0 inCritical Depth2.4 inChannel Slope0.004 ft/ftCritical Slope0.009 ft/ft	Downstream Velocity	Infinity ft/s	
Normal Depth3.0 inCritical Depth2.4 inChannel Slope0.004 ft/ftCritical Slope0.009 ft/ft	Upstream Velocity	Infinity ft/s	
Critical Depth2.4 inChannel Slope0.004 ft/ftCritical Slope0.009 ft/ft	Normal Depth	3.0 in	
Channel Slope0.004 ft/ftCritical Slope0.009 ft/ft	Critical Depth	2.4 in	
Critical Slope 0.009 ft/ft	Channel Slope	0.004 ft/ft	
	Critical Slope	0.009 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 13 of 27

Project Description		
Friction Mothod	Manning	
Friction Method	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.013 ft/ft	
Diameter	8.0 in	
Discharge	168.60 gpm	
Results		
Normal Depth	3.1 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.9 ft	
Hydraulic Radius	1.7 in	
Top Width	0.65 ft	
Critical Depth	3.4 in	
Percent Full	38.5 %	
Critical Slope	0.009 ft/ft	
Velocity	3.03 ft/s	
Velocity Head	0.14 ft	
Specific Energy	0.40 ft	
Froude Number	1.223	
Maximum Discharge	576.49 gpm	
Discharge Full	535.92 gpm	
Slope Full	0.001 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
· F -	-	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	38.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.1 in	
Critical Depth	3.4 in	
Channel Slope	0.013 ft/ft	
Critical Slope	0.009 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 14 of 27

Project Description		
Friction Method	Manning	
Solvo For	Formula	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.007 ft/ft	
Diameter	8.0 in	
Discharge	86.00 gpm	
Results		
Normal Depth	2.5 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.8 ft	
Hvdraulic Radius	1.4 in	
Top Width	0.62 ft	
Critical Depth	2.4 in	
Percent Full	31.8 %	
Critical Slope	0.009 ft/ft	
Velocity	2.01 ft/s	
Velocity Head	0.06 ft	
Specific Energy	0.27 ft	
Froude Number	0.903	
Maximum Discharge	423.03 gpm	
Discharge Full	393.26 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Unstream Denth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.5 in	
Critical Depth	2.4 in	
Channel Slope	0.007 ft/ft	
Critical Slope	0.009 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 15 of 27

Project Description		
Friction Method	Manning	
Solvo For	Formula	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.007 ft/ft	
Diameter	8.0 in	
Discharge	86.00 gpm	
Results		
Normal Depth	2.5 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.8 ft	
Hvdraulic Radius	1.4 in	
Top Width	0.62 ft	
Critical Depth	2.4 in	
Percent Full	31.8 %	
Critical Slope	0.009 ft/ft	
Velocity	2.01 ft/s	
Velocity Head	0.06 ft	
Specific Energy	0.27 ft	
Froude Number	0.903	
Maximum Discharge	423.03 gpm	
Discharge Full	393.26 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Unstream Denth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.5 in	
Critical Depth	2.4 in	
Channel Slope	0.007 ft/ft	
Critical Slope	0.009 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 16 of 27

Project Description		
Friction Method	Manning	
Salva For	Formula	
Solve For	Normal Deput	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.007 ft/ft	
Diameter	8.0 in	
Discharge	172.00 gpm	
Results		
Normal Depth	3.7 in	
Flow Area	0.2 ft ²	
Wetted Perimeter	1.0 ft	
Hydraulic Radius	1.9 in	
Top Width	0.66 ft	
Critical Depth	3.5 in	
Percent Full	46.3 %	
Critical Slope	0.009 ft/ft	
Velocity	2.43 ft/s	
Velocity Head	0.09 ft	
Specific Energy	0.40 ft	
Froude Number	0.878	
Maximum Discharge	423.03 gpm	
Discharge Full	393.26 gpm	
Slope Full	0.001 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.7 in	
Critical Depth	3.5 in	
Channel Slope	0.007 ft/ft	
Critical Slope	0.009 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 17 of 27

Project Description		
Friction Method	Manning	
Salva For	Formula	
Solve For	Normal Deput	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.007 ft/ft	
Diameter	8.0 in	
Discharge	65.80 gpm	
Results		
Normal Depth	2.2 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.7 ft	
Hydraulic Radius	1.3 in	
Top Width	0.60 ft	
Critical Depth	2.1 in	
Percent Full	27.6 %	
Critical Slope	0.009 ft/ft	
Velocity	1.87 ft/s	
Velocity Head	0.05 ft	
Specific Energy	0.24 ft	
Froude Number	0.906	
Maximum Discharge	423.03 gpm	
Discharge Full	393.26 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	, 0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.2 in	
Critical Depth	2.1 in	
Channel Slope	0.007 ft/ft	
Critical Slope	0.009 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 18 of 27

Project Description		
Friction Method	Manning	
Solvo For	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.007 ft/ft	
Diameter	10.0 in	
Discharge	232.60 gpm	
Results		
Normal Depth	3.9 in	
Flow Area	0.2 ft ²	
Wetted Perimeter	1.1 ft	
Hydraulic Radius	2.1 in	
Top Width	0.81 ft	
Critical Depth	3.8 in	
Percent Full	39.3 %	
Critical Slope	0.008 ft/ft	
Velocity	2.60 ft/s	
Velocity Head	0.11 ft	
Specific Energy	0.43 ft	
Froude Number	0.928	
Maximum Discharge	767.00 gpm	
Discharge Full	713.02 gpm	
Slope Full	0.001 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	, 0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.9 in	
Critical Depth	3.8 in	
Channel Slope	0.007 ft/ft	
Critical Slope	0.008 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 19 of 27

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient Roughness Coefficient 0.015 Channel Slope 0.007 ft/ft Diameter 8.0 in Discharge 181.40 gpm Results Normal Depth Normal Depth 3.8 in Flow Area 0.2 ft² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft How Type Subcritical GVF Output Data Downstream Depth 0.0 in Length 0.0 in Number Of Steps 0 Over Fourt Data <			
Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.015 Channel Slope 0.007 ft/ft Diameter 8.0 in Discharge 181.40 gpm Results 1 Normal Depth 3.8 in Flow Area 0.2 ft² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity 0.01 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 0.001 ft/ft Flow Type Subcritical GVF Input Data 0.0 in Downstream Depth 0.0 in Profile Decription N/A <t< td=""><td>Project Description</td><td></td><td></td></t<>	Project Description		
Formula Solve For Normal Depth Input Data Roughness Coefficient 0.015 Channel Slope 0.007 ft/ft Diameter 8.0 in Discharge 181.40 gpm Results Results Normal Depth 3.8 in Flow Area 0.2 ft² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity 2.46 ft/s Velocity 2.46 ft/s Velocity 2.46 ft/s Velocity Velocity 2.46 ft/s Discharge Full 3.93.26 gpm Discharge Full 3.93.26 gpm	Friction Method	Manning	
Jowe rul Normal Depth Input Data Rughness Coefficient 0.015 Channel Slope 0.007 ft/ft Diameter 8.0 in Discharge 181.40 gpm Results	Colvo For	Formula	
Input Data Roughness Coefficient 0.015 Channel Slope 0.007 ft/ft Disenarge 181.40 gpm Results Results Normal Depth 3.8 in Flow Area 0.2 ft² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data Upstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 Ownstream Depth 0.0 in Profile Description N/A <td>Solve for</td> <td>Normal Depth</td> <td></td>	Solve for	Normal Depth	
Roughness Coefficient 0.015 Channel Slope 0.007 ft/ft Discharge 181.40 gpm Results Normal Depth 3.8 in Flow Area 0.2 ft² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity 2.46 ft/s Velocity 2.46 ft/s Velocity 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data 0.0 in Length 0.0 in Length 0.0 in Parceac End Depth Over Rise 0.0 % Normal Depth Over Rise 0.0 % Normal Depth Over Rise 3.7.5 % <	Input Data		
Channel Slope 0.007 ft/ft Discharge 181.40 gpm Results	Roughness Coefficient	0.015	
Diameter 8.0 in Discharge 181.40 gpm Results	Channel Slope	0.007 ft/ft	
Discharge 181.40 gpm Results Normal Depth 3.8 in Flow Area 0.2 ft² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Depth 3.6 in Percent Full 47.7 % Critical Stope 0.009 ft/ft Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data 0.00 in Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Upstream Depth 0.0 in Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity <	Diameter	8.0 in	
Results Normal Depth 3.8 in Flow Area 0.2 ft² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data 0.00 ft Number Of Steps 0 GVF Output Data 0.0 in Length 0.0 in Profile Headloss 0.00 ft Average End Depth Over Rise 0.75 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Downstream Velocity Infinity ft/s Normal Depth 3.8 in	Discharge	181.40 gpm	
Results Normal Depth 3.8 in Flow Area 0.2 ft² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data 0.00 in Length 0.0 it Number Of Steps 0 GVF Output Data 0 Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.7.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s			
Normal Depth 3.8 in Flow Area 0.2 ft² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data 0 Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Profile Description N/A Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s<	Results		
Flow Area 0.2 ft ² Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data Upstream Depth Upstream Depth 0.0 in Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Upstream Velocity	Normal Depth	3.8 in	
Wetted Perimeter 1.0 ft Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical OVF Input Data 0.00 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.00 ft Mverage End Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Normal Depth 3.8 in Critical Slope 0.007 ft/ft Critical Slope 0.009 ft/ft	Flow Area	0.2 ft ²	
Hydraulic Radius 1.9 in Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data 0.001 ft Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.00 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Normal Depth 3.6 in Critical Slope 0.007 ft/ft Critical Slope 0.007 ft/ft	Wetted Perimeter	1.0 ft	
Top Width 0.67 ft Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data Ownstream Depth 0.0 in 1 Length 0.0 in Number Of Steps 0 GVF Output Data Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.8 in Critical Slope 0.007 ft/ft Critical Slope 0.007 ft/ft	Hydraulic Radius	1.9 in	
Critical Depth 3.6 in Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data	Top Width	0.67 ft	
Percent Full 47.7 % Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data 0 Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Downstream Velocity Infinity ft/s Downstream Velocity Infinity ft/s Upstream Velocity 1.0 finity ft/s Optream Velocity	Critical Depth	3.6 in	
Critical Slope 0.009 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Profile Description N/A Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.8 in Critical Slope 0.007 ft/ft Critical Slope 0.007 ft/ft	Percent Full	47.7 %	
Velocity2.46 ft/sVelocity Head0.09 ftSpecific Energy0.41 ftFroude Number0.873Maximum Discharge423.03 gpmDischarge Full393.26 gpmSlope Full0.001 ft/ftFlow TypeSubcriticalGVF Input DataDownstream DepthDownstream Depth0.0 inLength0.0 ftNumber Of Steps0GVF Output DataUpstream Depth0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sUpstream Velocity1.6 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Critical Slope	0.009 ft/ft	
Velocity Head0.09 ftSpecific Energy0.41 ftFroude Number0.873Maximum Discharge423.03 gpmDischarge Full393.26 gpmSlope Full0.001 ft/ftFlow TypeSubcriticalGVF Input DataDownstream DepthDownstream Depth0.0 inLength0.0 ftNumber Of Steps0GVF Output DataUpstream Depth0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth0.0 %Normal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Velocity	2.46 ft/s	
Specific Energy 0.41 ft Froude Number 0.873 Maximum Discharge 423.03 gpm Discharge Full 393.26 gpm Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data Upstream Depth Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.8 in Critical Depth 3.6 in Channel Slope 0.007 ft/ft Critical Slope 0.009 ft/ft	Velocity Head	0.09 ft	
Froude Number0.873Maximum Discharge423.03 gpmDischarge Full393.26 gpmSlope Full0.001 ft/ftFlow TypeSubcriticalGVF Input DataOwnstream Depth0.0 inLength0.0 ftNumber Of Steps0GVF Output DataUpstream Depth0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Specific Energy	0.41 ft	
Maximum Discharge423.03 gpmDischarge Full393.26 gpmSlope Full0.001 ft/ftFlow TypeSubcriticalGVF Input Data0.0 inLength0.0 ftNumber Of Steps0GVF Output Data0Upstream Depth0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.009 ft/ft	Froude Number	0.873	
Discharge Full393.26 gpmSlope Full0.001 ft/ftFlow TypeSubcriticalGVF Input Data	Maximum Discharge	423.03 gpm	
Slope Full 0.001 ft/ft Flow Type Subcritical GVF Input Data 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Opstream Slope 0.007 ft/ft Critical Depth 3.6 in Channel Slope 0.009 ft/ft	Discharge Full	393.26 gpm	
Flow Type Subcritical GVF Input Data 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0 Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Opstream Steph 3.8 in Critical Depth 3.6 in Channel Slope 0.009 ft/ft	Slope Full	0.001 ft/ft	
GVF Input Data Downstream Depth 0.0 in Length 0.0 ft Number Of Steps 0 GVF Output Data 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Opstream Depth 3.8 in Critical Depth 3.6 in Channel Slope 0.007 ft/ft Critical Slope 0.009 ft/ft	Flow Type	Subcritical	
Downstream Depth0.0 inLength0.0 ftNumber Of Steps0GVF Output DataUpstream DepthUpstream Depth0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.009 ft/ft	GVF Input Data		
Length 0.0 ft Number Of Steps 0 GVF Output Data	Downstream Depth	0.0 in	
Number Of Steps 0 GVF Output Data .00 in Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.8 in Critical Depth 3.6 in Channel Slope 0.007 ft/ft Critical Slope 0.009 ft/ft	Lenath	0.0 ft	
GVF Output Data Upstream Depth 0.0 in Profile Description N/A Profile Headloss 0.00 ft Average End Depth Over Rise 0.0 % Normal Depth Over Rise 37.5 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.8 in Critical Depth 3.6 in Channel Slope 0.007 ft/ft Critical Slope 0.009 ft/ft	Number Of Steps	0	
GVF Output DataUpstream Depth0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	· F - 7	-	
Upstream Depth0.0 inProfile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	GVF Output Data		
Profile DescriptionN/AProfile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Upstream Depth	0.0 in	
Profile Headloss0.00 ftAverage End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Profile Description	N/A	
Average End Depth Over Rise0.0 %Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Profile Headloss	0.00 ft	
Normal Depth Over Rise37.5 %Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Average End Depth Over Rise	0.0 %	
Downstream VelocityInfinity ft/sUpstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Normal Depth Over Rise	37.5 %	
Upstream VelocityInfinity ft/sNormal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Downstream Velocity	Infinity ft/s	
Normal Depth3.8 inCritical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Upstream Velocity	Infinity ft/s	
Critical Depth3.6 inChannel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Normal Depth	3.8 in	
Channel Slope0.007 ft/ftCritical Slope0.009 ft/ft	Critical Depth	3.6 in	
Critical Slope 0.009 ft/ft	Channel Slope	0.007 ft/ft	
	Critical Slope	0.009 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 20 of 27

Project Description		
Friction Method	Manning	
Solvo For	Formula	
Solve For	Normal Deput	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.007 ft/ft	
Diameter	12.0 in	
Discharge	381.00 gpm	
Results		
Normal Depth	4.7 in	
Flow Area	0.3 ft ²	
Wetted Perimeter	1.4 ft	
Hydraulic Radius	2.5 in	
Top Width	0.98 ft	
Critical Depth	4.6 in	
Percent Full	39.5 %	
Critical Slope	0.008 ft/ft	
Velocity	2.95 ft/s	
Velocity Head	0.13 ft	
Specific Energy	0.53 ft	
Froude Number	0.957	
Maximum Discharge	1,247.23 gpm	
Discharge Full	1,159.45 gpm	
Slope Full	0.001 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	4.7 in	
Critical Depth	4.6 in	
Channel Slope	0.007 ft/ft	
Critical Slope	0.008 ft/ft	

Pipe 20

Project Description		
Friction Method	Manning	
Coluc For	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.005 ft/ft	
Diameter	8.0 in	
Discharge	68.00 gpm	
Results		
Normal Depth	2.5 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.8 ft	
Hydraulic Radius	1.4 in	
Top Width	0.61 ft	
Critical Depth	2.1 in	
Percent Full	30.7 %	
Critical Slope	0.009 ft/ft	
Velocity	1.67 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.25 ft	
Froude Number	0.764	
Maximum Discharge	357.52 gpm	
Discharge Full	332.36 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.5 in	
Critical Depth	2.1 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.009 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 22 of 27

Project Description		
Friction Method	Manning	
Coluc For	Formula	
Solve For	Normai Deput	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.005 ft/ft	
Diameter	12.0 in	
Discharge	434.20 gpm	
Results		
Normal Depth	5.6 in	
Flow Area	0.4 ft ²	
Wetted Perimeter	1.5 ft	
Hydraulic Radius	2.9 in	
Top Width	1.00 ft	
Critical Depth	5.0 in	
Percent Full	46.6 %	
Critical Slope	0.008 ft/ft	
Velocity	2.70 ft/s	
Velocity Head	0.11 ft	
Specific Energy	0.58 ft	
Froude Number	0.793	
Maximum Discharge	1,054.10 gpm	
Discharge Full	979.92 gpm	
Slope Full	0.001 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.6 in	
Critical Depth	5.0 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.008 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 23 of 27

Project Description		
Friction Method	Manning	
Solvo For	Formula	
Solve Fol	Normai Depui	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.026 ft/ft	
Diameter	12.0 in	
Discharge	434.20 gpm	
Results		
Normal Depth	3.6 in	
Flow Area	0.2 ft ²	
Wetted Perimeter	1.2 ft	
Hydraulic Radius	2.0 in	
Top Width	0.92 ft	
Critical Depth	5.0 in	
Percent Full	29.9 %	
Critical Slope	0.008 ft/ft	
Velocity	4.91 ft/s	
Velocity Head	0.37 ft	
Specific Energy	0.67 ft	
Froude Number	1.865	
Maximum Discharge	2,403.72 gpm	
Discharge Full	2,234.55 gpm	
Slope Full	0.001 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	29.9 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.6 in	
Critical Depth	5.0 in	
Channel Slope	0.026 ft/ft	
Critical Slope	0.008 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 24 of 27
Project Description		
Friction Method	Manning	
Solvo For	Formula	
Solve For	Normai Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.073 ft/ft	
Diameter	8.0 in	
Discharge	42.10 gpm	
Results		
Normal Depth	1.0 in	
Flow Area	0.0 ft ²	
Wetted Perimeter	0.5 ft	
Hydraulic Radius	0.6 in	
Top Width	0.44 ft	
Critical Depth	1.7 in	
Percent Full	12.5 %	
Critical Slope	0.009 ft/ft	
Velocity	3.74 ft/s	
Velocity Head	0.22 ft	
Specific Energy	0.30 ft	
Froude Number	2.766	
Maximum Discharge	1,366.10 gpm	
Discharge Full	1,269.95 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	12.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.0 in	
Critical Depth	1.7 in	
Channel Slope	0.073 ft/ft	
Critical Slope	0.009 ft/ft	

2022.03.24.fm8 3/24/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 25 of 27

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.004 ft/ft	
Diameter	15.0 in	
Discharge	593.60 gpm	
Results		
Normal Depth	6.3 in	
Flow Area	0.5 ft ²	
Wetted Perimeter	1.8 ft	
Hydraulic Radius	3.3 in	
Top Width	1.24 ft	
Critical Depth	5.4 in	
Percent Full	42.3 %	
Critical Slope	0.007 ft/ft	
Velocity	2.68 ft/s	
Velocity Head	0.11 ft	
Specific Energy	0.64 ft	
Froude Number	0.746	
Maximum Discharge	1,709.44 gpm	
Discharge Full	1,589.13 gpm	
Slope Full	0.001 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	14.2 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	6.3 in	
Critical Depth	5.4 in	
Channel Slope	0.004 ft/ft	
Critical Slope	0.007 ft/ft	

2022.03.24.fm8 3/24/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 26 of 27

Project Description		
Friction Method	Manning	
Solvo For	Formula	
	Normai Depui	
Input Data		
Roughness Coefficient	0.015	
Channel Slope	0.003 ft/ft	
Diameter	10.0 in	
Discharge	647.60 gpm	
Results		
Normal Depth	3.2 in	
Flow Area	0.2 ft ²	
Wetted Perimeter	1.0 ft	
Hydraulic Radius	1.8 in	
Top Width	0.78 ft	
Critical Depth	2.6 in	
Percent Full	32.3 %	
Critical Slope	0.008 ft/ft	
Velocity	1.59 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.31 ft	
Froude Number	0.635	
Maximum Discharge	518.59 gpm	
Discharge Full	482.09 gpm	
Slope Full	0.000 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	37.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.2 in	
Critical Depth	2.6 in	
Channel Slope	0.003 ft/ft	
Critical Slope	0.008 ft/ft	

Pipe 26

2022.03.24.fm8 3/24/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 27 of 27